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Abstract—Crowd behaviour deviates from normal when an
emergency evacuation is needed. Thus, simulation of evacuation
situations has been identified as an important tool for assessing
design choices of urban areas, such as buildings, stadiums,etc.,
and Agent Based Modelling has been employed to tackle such
problems. In this paper, we propose that formal modelling can
rigorously define but also naturally lead to realistic simulations of
such cases. Our main contribution is presenting how formal state-
based methods, namely X-machines, can be employed to model
agents in emergency evacuation plans. We also discuss the role
of emotions, model artificial emotions that change the behaviour
of agents under emergency situations, and provide a formalism
that models the role of emotions and personality traits in order to
create a more realistic scenario. Finally, we demonstrate how the
developed formal models can be refined to code, a combination
of Netlogo and Prolog in this case, that is able to simulate crowd
behaviour with and without artificial emotions.

I. EMERGENCY EVACUATION AS A MULTI -AGENT SYSTEM

A. Evacuation Analysis and Simulation

A crucial aspect to the design of modern urban areas,
such as buildings, stadiums, metro stations, etc., is evacuation
analysis, i.e. assessing the the evacuation capability of the
area under emergency conditions (fire, earthquake, etc.). Under
such situations crowd behaviour deviates from normal in the
sense that the crowd immediately proceeds towards the exits,
there is panic and pushing, resulting in many cases in injuries
and fatalities. Computer based simulation of evacuation situa-
tions has been identified as an important tool for assessing
design choices, with a large number of evacuation models
proposed [1] that follow different approaches with respectto
the method used and most importantly the granularity of the
simulation, also referred to as scale.

A significant part of research takes the stance that crowd
movement andfluid dynamicspresent remarkable similarities.
Thus, flow dynamics are used, as in [2], in order to assess
designs and simulate crowd behavioural patterns moving in an
area of study. These models follow a “macroscopic” model,
describe crowd behaviour as a set of partial differential equa-
tions, and are most useful in densely populated environments.

In social forcemodels [3], pedestrians are considered as
entities exposed to “force field” generated by individual in-
tentions, other pedestrians and points of attraction. Models in
this category have been thoroughly studied, adapted to model

crowds in panic, and combined with agent based approaches
[4], to successfully model crowd behaviour. Social force
models follow the “microscopic” approach according to which
the overall behaviour is an emergent property of interactions
of individual entities.

Cellular automata[5], [6] describe the world as a grid of
cells, while behaviour is determined by a set of local rules
that update the state of each cell based on the state of its
neighbouring cells. Gas lattice models consider pedestrians as
“particles” moving on a grid with a set of probability rules
determining their next position [7].

B. Multi-Agent System for Crowd Behaviour

Agent Based Modelling(ABM) has also been employed to
tackle the problem of crowd behaviour. ABM has a number
of advantages [8], as it is flexible, allows a natural description
of the model and emergent phenomena to manifest. Since
ABM models can naturally model the diversity of a population,
they seem to offer a valuable tool for simulating evacuation
scenarios. For instance in [9] ABM is used for the crowd
behaviour and cellular automata to model the environment, in
a case of emergency evacuation in a metro station. In [10]
emotional agents are used to create a simulation of an actual
aircraft accident and validate the results against real life data.

The significant amount of published work in the area
of evacuation modelling and simulation could not possibly
be reported in the context of the present paper; there is a
significant amount of research work and tools addressing the
problem and the reader should refer to [1], [11], [12] for a
more in depth review and assessment of proposed models.

Building on the idea that ABM is well suited to emergency
evacuation scenarios, we propose that formal modelling can
rigorously define and naturally lead to realistic simulations of
such cases. The main aim of this paper is to show how formal
state-based methods can be employed to model artificial agents
on emergency evacuation plans, and to demonstrate how
formal models can be refined to code that is able to simulate
crowd behaviour under such situations. Finally, we providea
formalism that models the role of emotions and personality
traits in order to make a more realistic simulation scenario.

The structure of this paper is as follows: Section II presents
the X-machines formalism, the emergency evacuation scenario



under study, and the defined model of the participating rational
agents. Section III presents the developed Netlogo simulation
and discusses how it has been derived from the formal model.
Section IV discusses the role of emotions, presents an exten-
sion to the formalism, so as to support the modelling of agents
behaving under artificial emotions, the resulting simulation and
some comparative results. Finally, Section V concludes the
paper and suggests direction for future work.

II. FORMAL MODELLING OF STATE-BASED AGENTS IN AN

EVACUATION SCENARIO

Modelling is a stage in agent system development in which
the attributes of an agent are described in an adequately ab-
stract way to be useful for implementation. Formal modelling
implies the use of mathematical notation and although it can
be viewed as a pedantic step towards development, it offers a
number of advantages that informal or semi-formal notations
do not, such as the ability to prove correctness with respectto
the specification. Correctness can be achieved by the process
of verifying that certain properties hold in the original model
and that the system implementation behaves in the right way
under a complete test set.

Both formal verification and testing are computationally
intensive processes. In particular types of agent systems,
such as spatial multi-agent systems (MAS) representing crowd
behaviour, formal proofs run into combinatorial explosion. On
the other hand, model checking as formal verification would
require the properties to be verified to be known in advance,
which cannot always be true, especially in MAS with emergent
behaviour. This is where simulation and visualisation playan
important role towards identifying visual or statistical patterns
of the overall behaviour of the system.

A. An Emergency Evacuation Plan

The case that we choose to model has to do with a building
evacuation in an emergency situation. More specifically, we
attempt to model the behaviour of individual people from
the point that danger is perceived until their exit from the
building. We also take into consideration that some kind of
an evacuation plan is available and may be followed by the
individuals. This plan is usually of the form of a floor blueprint
that is posted at various spots, indicating the current position
of the person looking at the blueprint and the path to the exit.
The path for the purposes of this work is considered to be a
sequences of points in space (milestones) that progressively
brings the individual closer to the exit (Fig. 1).

B. Modelling with X-machines

There exist numerous formal methods, either general or spe-
cialised to agent modelling [13], [14]. We chose to work with
X-machines (XM), which are state-based machines extended
with a memory structure. The memory structure, which is an
n-tuple of values, makes the machine more compact compared
to memory-less state machines. Another important difference
is that the transitions between states are not triggered by inputs

Fig. 1. Example blueprint of a building floor. White areas represent rooms
and the grey area is the corridor. The plan to the exit is indicated by the
squares in the corridor that are connected with a line, and lead to the stairs
(exit) to the right.

alone, but by functions that accept an input and the memory
values and produce an output and new memory values.

Definition 1: A stream X-machine[15] is an 8-tuple

X = (Σ , Γ , Q, M, Φ, F, q0, m0)

where:

• Σ andΓ are the input and output alphabets, respectively.
• Q is the finite set of states.
• M is the (possibly) infinite set called memory.
• Φ is a set of partial functionsϕ; each such function maps

an input and a memory value to an output and a possibly
different memory value,ϕ : Σ ×M → Γ ×M .

• F , often described as a state transition diagram, is the
next state partial function,F : Q×Φ → Q, which given
a state and a function fromΦ determines the next state.

• q0 andm0 are the initial state and memory respectively.

Definition 2: A computation state is defined as the tuple
(q, m), with q ∈ Q andm ∈M . The computation step is de-

fined as(q, m)
ϕ

⊢ (q′, m′) with q, q′ ∈ Q andm, m′ ∈M such
thatϕ(σ, m) = (γ, m′) andF (q, ϕ) = q′. The computation is
the series of computation steps when all inputs are applied to
the initial computation state(q0, m0).

X-machines are particularly suited for the modelling of
reactive agents, as they make the modelling process more
intuitive. It has been demonstrated that XM and its extensions
are particularly useful for modelling biological and biology-
inspired MAS [16]. The great advantage over other methods
is their strong legacy of theory and practice in: (a) modelling
potential for dynamically structured MAS [17], (b) refinement,
animation and simulation [18], (c) testing methods that prove
correctness [19] with tools for automatic test generation [20],
and (d) model checking for verification of properties [21].

To model the given evacuation scenario using XM we
initially consider that all individuals are placedin the rooms,
same way students are in the classrooms during lectures, when
an emergency is perceived. The memory of the XM holds



the evacuation plan (initially empty denoted byε) and the
current position of the person. The plan is considered as a
sequence of coordinates-milestones that have to be reached,
that lead to the exit. Therefore,Plan : seq(Position), where
Position : N× N, andm0 = (ε, Pos).

The input to the XM at any one point is a set of elements
that describe the individual’s percepts and is of the form:
Σ = PosDescriptions ∪ {danger, checkIfReached,
checkIfAtExit, dissorientation} where
PosDescriptions : Position× {empty, door}.

Upon perceiving the danger an individual starts looking for
the plan posted next to the room door and therefore starts
moving towards it. When the plan is read the person proceeds
with the evacuation process by moving in the surrounding
available space closer to the next point that is indicated by
the plan (first coordinate pair in the sequence). When such a
point is reached it is removed from the head of the list and
the individual starts moving towards the next one.

Thedissorientation input element is for modelling that in
some cases an individual in distress gets dissoriented, which
in this case means that the plan is lost; the person does not
know where to go and starts wandering until another plan
is found.checkIfReached andcheckIfAtExit are there to
model that the individual is constantly “checking” whetherthe
next point in the plan or the exit has been reached.

The state transition diagram of the model is depicted in
Fig. 2 and we present below some of the functions involved
for indicative purposes.

ϕperceiveDanger : (Percept, (ε, Pos)) 7→
(“DangerPerceived”, (ε, Pos)),
if danger ∈ Percept

ϕsearchForPlan : (Percept, (ε, Pos)) 7→
(“LookingForP lan”, (ε, NewPos)),
if (NewPos, empty) ∈ Percept
and neighbours(Pos, NewPos)
and (Plan, plan) /∈ Percept

ϕmoveToNext : (Percept, (NextPoint :: Rest, Pos)) 7→
(“FollowingP lan”, (NextPoint :: Rest, NewPos)),
if (NewPos, empty) ∈ Percept
and neighbours(Pos, NewPos)
and closer(Pos, NextPoint, NewPos)

ϕgetDissoriented : (Percept, (Plan, Pos)) 7→
(“GotDissoriented”, (ε, Pos)),
if dissorientation ∈ Percept

III. S IMULATION AND V ISUALISATION

Simulation is a valuable tool for informally verifying MAS.
Particularly in cases of spatial properties, the visualisation
provided by a simulation platform can reveal a variety of
desired or unwanted/unexpected emerging behaviours.

NetLogo [22] has been widely accepted as a tool for
agent based simulation of emerging and social phenomena. It
offers an easy to use environment for the development of the
simulation experiment with strong visualization facilities, and
a domain specific language with a strong functional flavour.

Fig. 2. The XM state transition diagram.

Direct encoding, however, of a stream XM model is not
supported by the NetLogo language. Thus a modified version
of a state machine DSL was developed that supports stream
XMs [23]. The new DSL allows a direct encoding of the
transition diagram depicted in Fig. 2, in the following form
(part of the actual implementation):

to-report state-def-of-persons
report (list
state "No Emergency"
# x-func "perceiveDanger" goto "Looking for Plan"
# otherwise do "nothing" goto "No Emergency"
end-state

state "Evacuating"
# x-func "findExit" goto "At Exit"
# x-func "reachNext" goto "Evacuating"
# x-func "moveToNext" goto "Evacuating"
# otherwise do "nothing" goto "Evacuating"
end-state

An execution layer is responsible for “running” the agents,
providing input from the simulation environment and updating
the agent simulation state. Although the programming facilities
and the execution layer were developed in NetLogo’s own
language, XM function semantics rely heavily on notions such
as argument unification, and thus were encoded in Prolog
and invoked through a NetLogo-Prolog language interface,
called NetPrologo1. Following this approach, the model’s
functions enjoy direct encoding in Prolog. Given the above,
the simulation environment follows the architecture depicted
in Fig. 3 and, for instance, the function:

ϕperceiveDanger : (Percept, (ε, Pos)) 7→
(“DangerPerceived”, (ε, Pos)), if danger ∈ Percept

is directly encoded in Prolog as:

perceiveDanger(Percept, [ [], Pos ],
dangerPerceived, [ [], Pos] ):-

member(danger, Percept).

In the experiment presented the following assumptions hold:

1NetPrologo is available at http://www.cs.us.es/ fsancho/NetProLogo/



Fig. 3. Architecture of the Simulator.

• Space is discrete, with the common assumption that each
individual is occupying a 40×40 cm cell and can move
to eight possible neighbouring positions.

• All students are inside the classrooms and, upon hearing
the alarm, move towards the door of the room, where
they can read the evacuation plan for their specific
location. Thus, in each door a different evacuation plan
is advertised.

Note, at this point, that a number of NetLogo reporters were
implemented that provide input to the XM execution layer, as
well as code for updating the agents’ position in the world
according to the output of the XM.

Having the layer for specification and execution of stream
XM agents, we have developed a simulation experiment (Fig.
4). The experiment allows a number of parameters to be set,
such as the total number of people on the floor at the time
of the alarm, as well as the monitoring of various parameters,
such as the average and total evacuation times.

Although the environment could be more detailed, e.g.
by including desks, chairs, etc., such a world model was
considered outside the scope of this work, its focus being on
demonstrating and emphasizing the agent modelling approach.

IV. T HE ROLE OFEMOTIONS

In order to achieve a more realistic simulation, agents
must be able to demonstrate believable behaviour, modelling
humans who under stress or panic make irrational decisions.
Emotions influence agent perception, learning, behaving, com-
munication, etc., and so far, there is no widely accepted theory
describing how emotional processes affect reasoning in general
[24]. A number of computational models of emotions logically
formalised as BDI agents have been attempted [25]. The
role of emotions as well as the type of agents in emergency
evacuation has been receiving increased attention [26].

We chose to not to adopt any particular emotion theory but
to consider basic emotions, referred to as “artificial emotions”,
which are plugged-in to the XM definition in order to facilitate
modelling of emotional agents.

A. Modelling witheX-machines

Definition 3: An emotions X-machineis defined as [27]:

eX = (Σ , Γ , Q, M, Φ, F, q0, m0, E, e
Φ, e0)

where:

• Σ , Γ , Q, M , F , Φ, q0 and m0 are as instream X-
machines

• E = (ǫ1, . . . , ǫn) is a vector of emotion identifiers.
•

e
Φ : E × M × Σ → E × M is the emotion revision

function.
• e0 is the initial vector of emotion identifiers representing

the initial emotional state.

An eX model has a computational state as well an emotional
state represented by the vector of emotional identifiers. An
input triggers the emotion revision function, changing the
emotional state and memory, as well as a transition function,
returning a new state. It is therefore possible that emotions
change the computation path by allowing bias towards one or
another function. The computation is defined as follows.

Definition 4: A computation state is defined as the tuple
(q, m, e), with q ∈ Q and m ∈ M and e ∈ E. The compu-
tation step, which consumes an inputσ ∈ Σ and changes the
computation state(q, m, e) ⊢ (q′, m′, e′) is composed of two
substeps:

• (q, m, e)
eϕ

⊢ (q, m′′, e′) with q ∈ Q, e, e′ ∈ E and
m, m′′ ∈M , such thateϕ(e, m, σ) = (e′, m′′)

• (q, m′′, e′)
ϕ

⊢ (q′, m′) with q, q′ ∈ Q, m′, m′′ ∈ M and
e′ ∈ E, such thatϕ(σ, m′′, e′) = (γ, m′) andF (q, ϕ) =
q′.

The computation is defined as the series of computation steps
that take place when all inputs are applied to the initial
computation state(q0, m0, e0).

Bearing in mind the definition of theeXM, the model
developed in Section II-B is now enhanced with an emo-
tional state. We include the basic emotionHorror [28] that
can be assigned a set of crisp values:HorrorLevel =
{calm, alarm, fear, terror, panic, hysteria}. To model the
strength of the emotion and determine when a horror level
is reached, a valueS = 0 . . . 100 is required. Conse-
quently, an emotion revision functionemotionRevision :
(HorrorLevel, S) → (HorrorLevel, S) can update the
strength and the horror level, given the current values, andthe
emotional vector is now defined asE = (HorrorLevel, S),
with e0 = (calm, 0).

The rate of change ofE may remain the same for all agents
but in more realistic situations it depends on individual agents.
Some individuals have a predisposition towards experiencing
certain emotions, and differentpersonality traitsare responsi-
ble for how quickly an emotional state is reached, maintained
and recovered from [29]. Therefore, some agents reach a state
of panic more easily than others who remain calm or alarmed
for a longer period. To conclude, the XM emotion revision
function eϕ for the given scenario is defined as follows:
eϕ : (Percept, (Plan, Pos, PersonTrait), (T, S)) 7→
((Plan, Pos, PersonTrait), (T ′, S′)),
where(T ′, S′)← emotionRevision(PersonTrait, S)

whereemotionRevision is defined so as to take into consid-
eration the personality trait of a person and the current strength



Fig. 4. NetLogo Simulation of a building emergency evacuation scenario in which agents behave rationally (without emotions).

of the emotion and increase or decrease the latter accordingly.
A concrete instance of an emotion revision can be seen

below where a calm person becomes alarmed when danger is
initially perceived :
eϕgetAlarmed : (Percept, (ε, Pos, PersonTrait), (calm, 0))
7→ ((ε, Pos, PersonTrait), (alarm, S′)),
if danger ∈ Percept,
where(alarm, S′)← emotionRevision(PersonTrait, 0)

So, emotionRevision will increase the strength of the
artificial emotion to a value biased proportionally to the
personality trait of the agent.

B. Simulation Results under Emotional Reactions

Based on the revisedeXM model, we developed a more
realistic simulation (Fig. 5). Both snapshots in Figures 4 and
5 were taken 50 cycles after the alarm sound, and it is evident
that the overall behaviour is affected. In the first case, the
crowd is well formed, walking towards the exit, while in the
second it is more dispersed; the number of agents who are lost
is increased due to the fact that they reach a state of hysteria
that prevents them from following the evacuation plan. The
difference is also evident in Table I where the total evacuation
times are listed for both cases, with various numbers of agents
in the building. It is interesting to spot that sometimes a bigger
number of agents does not necessarily lead to a greater total
evacuation time or greater individual average. This is due to a
critical mass of agents that “push” other lost agents to towards
the exit. Further analysis of such results does not fall in the
scope of this paper, in which we aim only to demonstrate how
formal modelling can lead to a visual simulation.

V. CONCLUSIONS ANDFURTHER WORK

In this paper, we have demonstrated how formal agent based
modelling can be used for crowd behaviour in emergency

TABLE I
TOTAL EVACUATION TIME IN ALTERNATIVE SCENARIOS; AVERAGE

INDIVIDUAL EVACUATION TIME IN BRACKETS

Number of Agents Rational Behaviour Behaviour with Emotions
100 2600 (311) 9300 (880)
200 3380 (281) 8270 (960)
300 3914 (312) 13200 (1000)
400 4360 (385) 15424 (1221)

evacuation scenarios, using X-machines and its extensioneX-
machines. The behaviour of each agent was formally modelled
twice; once acting totally rationally and once acting under
artificial emotions. Respectively, two different visual simula-
tions were developed based on the formal models. NetLogo
in collaboration with Prolog, was shown to suit the task
perfectly. Results verified the expected difference in overall
behaviour, depicting the difference between an ideal and a
realistic scenario.

The artificial emotions model is by no means complete. It
needs further enhancement to deal with emotions that affect
perception appraisal, communication, etc., and the agents
can be further classified according to more factors affecting
crowd behaviour, such as having families and other social
interactions.

Although the NetPrologo interface provides an elegant so-
lution to the problem of encoding XM functions in the sim-
ulation, it imposes a computational overhead in the execution
of the model. Thus, one main direction towards the simulation
of larger scale experiments will be to develop a compiler from
XM specifications to NetLogo that will offer faster execution
of the simulation experiments.
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