
Workload-Aware Clustering of XML Peers

Georgia Koloniari
Computer Science Department
University of Ioannina, Greece

kgeorgia@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

Abstract

Peer-to-peer (p2p) systems are attracting increasing at-
tention as an efficient means of sharing data among large,
diverse and dynamic sets of users. Clustering in p2p
systems aims at improving query processing performance
by reducing communication costs, through placing similar
data at neighboring peers. In this paper, we present a dis-
tributed procedure for p2p clustering in a system where
peers share collections of XML documents. Peer cluster-
ing is based on the use of rules that associate the exis-
tence of path patterns in a peer’s data to its likelihood of
belonging to a given cluster. The patterns that form the
rules are selected both from the content of the peers and
the query workload of the system according to their pop-
ularity. Furthermore, we describe how these rules adapt
to reflect changes in the content of the peers and the local
query workload of each cluster.

1. Introduction

Peer-to-peer (p2p) systems have emerged as an intelli-
gent way of exploiting the vast computing power and stor-
age capacity that remains unused and scattered around mul-
tiple nodes in the Internet. Through the cooperation of a
multitude of autonomous nodes, p2p systems provide the
means for efficient data and services sharing to a large set
of diverse and dynamic users. The peers form logical over-
lay networks by establishing links to some other peers they
know or discover and use these logical links to forward their
queries and requests so as to retrieve the data of their inter-
est.

Meanwhile, XML [24] that has evolved as the new stan-
dard for the representation and exchange of semistructured
data on the Internet seems a natural choice for describing
and querying the resources and data in p2p systems. The
flexibility of XML in describing heterogeneous data makes
it suitable for distributed applications where the data are ei-
ther native XML documents or XML descriptions of data

or services that are represented in different formats in the
underlying sources (i.e. in relational databases).

Clustering has been recently proposed for improving the
performance in p2p systems, by reducing communication
costs through placing similar data at neighboring peers. We
can distinguish between (i) clustering similar data items or
indexes of similar data items so that similar data or indexes
of similar data respectively are placed in neighboring peers
and (ii) clustering peers with similar data items, so that their
distance in the overlay network is small. By grouping simi-
lar peers, a query that reaches a peer in the cluster finds all
other peers with relevant data nearby. Clustering the peers
affects the topology of the p2p overlay. Usually, query rout-
ing proceeds in two steps: first the appropriate cluster is
identified and then the query is routed inside the cluster.

In this paper, we present a distributed workload-aware
procedure for clustering peers in a p2p system that uses
XML as the underlying data model. In particular, the sys-
tem follows a hybrid p2p architecture where each superpeer
acts as the representative of a cluster and is responsible for
maintaining the cluster description. The cluster description
is defined as a set of path expressions that best describe both
the content of the peers that belong in each cluster and the
local query workload of the cluster, i.e., the queries from
the system query workload that are satisfied by the peers in
the cluster. The representative path expressions that are in-
cluded in each description are selected based on their popu-
larity, since the most popular expressions are those that best
describe the contents of each cluster.

Peer clustering is based on rules that associate the pres-
ence of each path expression of a cluster description in the
documents of the peers to the likelihood of the peer belong-
ing to this cluster, an idea presented in XRules [25], a cen-
tralized algorithm for clustering XML data that uses dis-
criminatory structural patterns to determine the cluster each
document belongs to. Furthermore, clustering is adaptive
in the sense that each cluster description changes over time
as new peers join the system and share new data and as the
query workload of the system changes.

The key contributions of our clustering procedure are

that:

• no global knowledge of the distribution the documents
of the participating peers follow is required,

• the clusters are created according to both the content
of the peers and the query workload of the system and

• the cluster descriptions change over time to reflect
changes in the peers contents and the query workload.

The rest of the paper is organized as follows: in Sec-
tion 2, we present related work. In Section 3, we outline
the data and query language model that is supported in the
system along with the overall system architecture. In sec-
tion 4, we describe our rule-based clustering algorithm and
describe how the cluster description is derived only from
the content of the peers. We also present the peer join and
the query routing procedures. In Section 5, we present how
the cluster description is adapted when we have knowledge
about the workload of the system. In Section 6, we present
our experimental results and we conclude in Section 7, with
a summary and directions for future work.

2. Related Work

Our system is based on creating clusters of nodes that
have similar data or satisfy similar sets of queries. Such p2p
systems can be neither classified intostructuredp2p sys-
tems that are usually based on distributed hash tables ([20],
[17]) and confine peers into rigid topologies, nor intoun-
structuredp2p systems ([13], [6]) which are organized in
an ad hoc manner.

With regards to clustered p2p systems, in most current
research, the number or the description of the clusters is
fixed and global knowledge of this information is required.
Furthermore, the schema that the data of the peers follow or
a taxonomy in which they belong needs to be predefined so
as to determine the created clusters. With Semantic Overlay
Networks (SONs), peers with semantically similar content
are logically linked to form overlay networks based on a
classification hierarchy of their data, which is defined a pri-
ori [4]. Queries are processed by identifying which SONs
are better suited to answer them. In [23], clusters of peers
are again formed based on the semantic categories of their
data. Sophisticated procedures are proposed for both inter-
cluster and intra-cluster load balancing. Similarly in [2],
peers are partitioned into topic segments based on their data.
A fixed set ofC clusters is assumed, each one correspond-
ing to a topic segment. Knowledge of theC centroids is
global.

In structured p2p systems, clustering the data or index
can be achieved by using as input to the hash function not
just the name of the document but a semantic vector de-
scribing its content and structure. If the hash function is

order-preserving, similar documents are stored at the same
or neighboring peers. Order preserving hash functions are
those hash functions that for similar inputs they produce
outputs close in the identifier space. When schema infor-
mation is available, the virtual address space can be split to
sub-spaces each one corresponding to a different part of the
global schema ([19], [14]). Then, upon entering the system,
each peer (or data item) can be mapped to the sub-space of
the virtual space that corresponds to the schema of the peer,
thus creating clusters of peers that follow the same schema.

Schema information has also been exploited in hy-
brid p2p systems where the superpeers collect their peers’
schemas and peers form clusters under the superpeers on a
schema similarity basis. In SQPeer [7], peers are grouped
based on their RDF-schema similarity. The peers that hold
RDF descriptions conforming to the same RDF schema are
clustered together. In XPeer [18], peers are logically orga-
nized into clusters that are also based on schema-similarity,
whenever this is possible. Superpeers are organized to form
a tree, where each peer hosts schema information about its
children. In rule-based clustering [11], peers are registered
and grouped in clusters based on cluster specific rules that
describe the properties that each peer in the cluster should
possess. These rules are provided by a cluster’s administra-
tor.

Our approach, does not require any knowledge of the
schemas the data belong to, nor the use of predefined cate-
gories. It organizes peers into clusters based solely on in-
formation dynamically extracted from their content and the
query workload of the system.

In [8], a form of clustering is applied to an unstructured
p2p system of XML peers. The peers are organized into
hierarchies according to their content similarity. Content
similarity is derived from the similarity of their routing in-
dexes. Similarity takes into account both the structure and
the content of documents. Upon entering the system, each
peer sends its index to the roots of the hierarchies that com-
pare it with their own indexes. The peer attaches to the most
similar hierarchy, so that peers with similar content are or-
ganized into the same hierarchy. This approach does not
require any knowledge of the schema of the data. However,
it does not take into account the frequency of the data items
into the content of the peers and it also does not exploit the
query workload of the system.

Related research on clustering XML documents in cen-
tralized settings, which relies mostly on structural informa-
tion, cannot be directly applied in a dynamic p2p system
where the documents are distributed among multiple nodes.
For the classification of schema-less data, the authors of
[21] combine text terms, structural information in the form
of twigs and paths and also ontological knowledge (Word-
Net [5], [12]) to construct more expressive feature spaces
that are then used for the classification. S-GRACE [10] is a

<xml>
 <catalog>
 <book>
 <title>...</title>
 <author>...</author>
 </book>
 <book>
 <title>...</title>
 <editor>...</editor>
 </book>
<journal>
 <title>...</title>
 </journal>

 </catalog>
(a) (b)

catalog

bookbook journal

title author title editor title

Figure 1. Example of (a) an XML document
and (b) its corresponding XML tree

hierarchical algorithm for clustering XML documents with
a distance metric based on the notion of a structure graph,
which is a minimal summary of edge containment in the
data. In contrast with the previous methods that can be ap-
plied to schema-less data, XClust [9] addresses clustering
when schema information in the form of DTDs is available.
XClust clusters DTDs based on the semantics, immediate
descendants and leaf-context similarity of DTD elements.
XRules [25] assigns the documents to categories through a
rule based classification approach that relates the presence
of a particular structural pattern in an XML document to its
likelihood of belonging to a particular category. We adopted
XRules by dynamically extracting the patterns that are used
as the rules, and instead of associating each set of rules to a
predefined category we associate it with a cluster.

3. Clustered Overlay Network

A clustered p2p system, is a p2p system in which the
peers are organized into groups that form the logical overlay
network.

3.1. Data Model and Query Language

We consider a system in which each peer stores a set of
XML documents. We model an XML document as a node-
labeled treeT (V,E) (Fig. 1). Each nodeei ∈ V corre-
sponds to an XML element with a label assigned from some
some string literals alphabet that captures element’s seman-
tics. Edges(ei, ej) ∈ E are used to capture the containment
of elementej underei. Although leaf elements inT typi-
cally contain values, in our work as a first step we ignore
values and mainly focus on the label structure of an XML
tree. The system supports queries that use simple XPath
expressions involving only the child and descendant-or-self
axes (i.e.“/” and “//” operators).

sp1

sp2

sp3

sp4

sp5

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

Network

Figure 2. System Architecture

3.2 System Architecture

Our system is based on a hybrid p2p architecture with
a number of peers having increased responsibilities, called
superpeers. The superpeers are usually peers that have in-
creased capabilities (storage, processing, etc) and good sta-
bility properties. Each superpeer in the system is responsi-
ble for the management of a single cluster and its interaction
with the other clusters in the system and acts as that clus-
ter’s representative. Each cluster representative maintains
the cluster description and knows all the peers that belong
in its cluster.

The representatives are responsible for routing the
queries that concern their clusters to the corresponding
peers and also route the queries of the peers of their cluster
to the other clusters that may contain relevant results. We
assume that the cluster representatives are fully connected
with each other forming the backbone of the overlay net-
work, although other topologies are also feasible. Simple
peers are organized into clusters by following a star topol-
ogy, with each simple peer connected to a cluster represen-
tative (Fig. 2). Furthermore, the representatives stores the
cluster description that is used for query routing and peer
join. Apart from its own cluster description, each superpeer
also maintains the cluster description of all the other clus-
ters in the system.

4. Rule-based Clustering

The clustering algorithm we apply on the peers is based
on the idea presented in the XRules [25] centralized clus-
tering procedure for XML documents. XRules assigns each
document to a category from a set of predefined categories,
through a rule based classification approach that relates the
presence of a particular structural pattern in an XML docu-
ment to its likelihood of belonging to a particular category.

XRules associates each category with a set of structural pat-
terns and examines the presence of these structural patterns
in each document to decide to which category each docu-
ment belongs.

Based on the same basic idea, we define the cluster de-
scriptions as sets of simple path expressions. These path
expressions are chosen so as to be descriptive of the con-
tent of the peers and the query workload of each cluster.
The goal of the description is to improve the performance
of query routing, by efficiently determining the appropriate
clusters each query needs to be forwarded to.

In particular, we want to include into the description of
each cluster the path expressions that are most descriptive
of its peers contents, thus they exist most frequently in the
documents of their peers. By including these path expres-
sions into the description, queries can efficiently locate the
clusters that contain the larger number of results and retrieve
them.

Similarly, we also want to include in the cluster descrip-
tion the most popular queries from the system’s query work-
load that concern the given cluster. By including the most
popular queries that are satisfied by the given cluster, we in-
clude a description of the data that are more often requested
from this cluster. We expect that if similar queries are posed
in the future they will be more efficiently routed to this clus-
ter.

To limit the number of path expressions that are included
in a cluster’s description we can use a predefined maximum
numberN of path expressions and include in the descrip-
tion theN path expressions with the greater frequency.

Definition 1 (Cluster Description)The description of a
cluster i, CDi is a set ofN simple path expressionsp1,
p2, . . . , pN , extracted from the contents of its peers and the
query workload that concerns it, sorted by their frequency.

The path expressions that are included in each cluster
description are used as the rules in the clustering procedure.
The path expressions of eachCDi are matched against the
documents of a peer and the probability of a peer belonging
to a given cluster is determined by the existence of the path
expressions of theCDi in the peer’s documents. In partic-
ular, the similarity between a peer and a cluster is evaluated
by the procedure CalculateScore (Alg. 1). For every path
pi in a cluster descriptionCD we check whether this path
exists in the set of documents of the peer (D). If it does ex-
ist we increase the similarity score by adding the frequency
of the appearance ofpi in D. The final similarity score is
evaluated by dividing the total score that is calculated after
examining each path expression of theCD with the number
of total path expressions that belong toD.

To calculate the similarity scores we need to know all
the path expressions that exist in the documents of a peer
n, along with their frequencies (number of appearances).

Algorithm 1 CalculateScore(CD, N, D)
1: score := 0
2: for i = 1 to N do
3: if pi ∈ D then
4: score := score + count(pi)
5: end if
6: end for
7: score := score/|D|
8: return score

Path Label Frequency
catalog 1
book 2
title 3
journal 1
editor 1
author 1
catalog/book 2
catalog/journal 1
book/title 2
book/author 1
book/editor 1
journal/title 1
catalog/book/title 2
catalog/book/author 1
catalog/book/editor 1
catalog/journal/title 1

Table 1. Path-count table of the XML docu-
ment of Fig.1

Instead of examining all the documents and record the fre-
quency of their paths each time we want to evaluate a sim-
ilarity score we can rely on an auxiliary data structure that
provides us with the required information. We use a simple
structure called thepath count table.

Definition 2 (Path-Count Table)Given an XML document
Dj , a path-count tableT (path, count) such that for each
pathpathi in Dj , there is a tupleti in T with ti : path =
pathi andti : count = counti, wherecounti is the number
of occurrences (also referred to as frequency) ofpathi in
Dj .

Table 1 is the path-count table that is constructed from
the document of Fig. 1.

Although the path-count table requires a lot of space and
it cannot be searched very efficiently, we use it in our ap-
proach so as to demonstrate its feasibility. Other data struc-
tures such as [1], [15], [16] that provide means for summa-
rizing XML documents more efficiently and also offer se-

lectivity estimations can be used instead of the path-count
table without affecting the rule-based clustering procedure.

4.1. Content-based Cluster Description

When no knowledge of the query workload of the system
is available, for example in the bootstrapping of the system,
the cluster descriptions have to rely only on the content of
the peers that belong to each cluster.

Each cluster representative is responsible for construct-
ing its cluster description. In particular, each peerp in the
system creates a path-count table that includes all the paths
that appear in its documents, calledPeer Table. Each clus-
ter representative gathers all the peer tables of its cluster and
merges them into one so as to create thecluster table. When
new peers join the cluster their peer table is merged into the
cluster table (Alg. 2). Similarly, when a peer leaves the
system, its local table is subtracted from the corresponding
cluster table.

Algorithm 2 MergePathTable(ClusterTable, PeerTable)
1: while PeerTable.entry! = NULL do
2: flag = 0
3: for all ClusterTable.entry do
4: if ClusterTable.entry(path) ==

PeerTable.entry(path) then
5: ClusterTable.entry(count) =

ClusterTable.entry(count) +
PeerTable.entry(count)

6: Add peer n to
ClusterTable.entryi(contributing)

7: flag = 1
8: end if
9: end for

10: if flag == 0 then
11: Add entryPeerTable.entry to ClusterTable
12: Add peer n to

ClusterTable.entryi(contributing)
13: end if
14: end while
15: return

Apart from the path expression and its frequency each
entry in a cluster table also contains a list of peers, called
contributing, which includes the peers that have the given
path expression in the entry in their documents.

The cluster table consists of a summary of the paths that
appear in all the documents of the peers in the cluster. Thus,
it can be used to extract the most popular path expressions
from the contents of the cluster that will form the cluster
description. Thus, it can be used for the extraction of the
path expressions.

We have to note here that this approach does not only
count how many different documents have the same full
path expression appearing in their data but also it counts the
different times the path expression is met in the same docu-
ment. By selecting the paths with the highest frequency we
choose the path expressions that are more frequently met
in the peers contents and thus, are more descriptive of the
cluster’s content.

Algorithm 3 CreateCD((N, ClusterTable)
1: sortClusterTable according tocount
2: for i = 1 to N do
3: CDi < −ClusterTable.entryi

4: end for
5: return CD

The procedure for building the cluster description
CreateCD (Alg. 3) takes as input a cluster table
(ClusterTable) and the maximum number of expressions
allowed in a description (N), and outputs a cluster descrip-
tion with theN path expressions sorted by their frequency
in the cluster table.

4.2. Peer Join

When a new peern wishes to join the network it has
to find the appropriate cluster to attach to, i.e. the cluster
whose peers have the most similar data to its own. To locate
the right cluster,n follows the following procedure:

1. It constructs its peer table and sends a join request to
one of the super peers (SP) that form the backbone of
the network.

2. When a superpeerSP receives a join request, it replies
to n by sending to it all the cluster descriptions in the
system.

3. When peern receives the descriptions it applies the
CalculateScore procedure for each of the cluster de-
scription to obtain its similarity score with each of the
clusters. Peern determines clusterW as the winner,
the cluster it wishes to attach to, the cluster that gave
the higher similarity score.

4. Peern sends a join request to the representative ofW
along with its peer table.

5. WhenW receives the join request it merges the peer
table ofn to the cluster table and adds peern in its
cluster.

4.3. Query Routing

Usually, in clustered p2p systems we can discern two dif-
ferent strategies that govern query routing. The first strat-
egy concerns locating the appropriate clusters that contain
data relevant to the query. This is achieved by interactions
among the different clusters in the system (intra-cluster
routing). The second concerns the routing of the query
within a single cluster (inter-clusterrouting). In our system,
intra-cluster routing exploit the cluster descriptions, while
inter-cluster routing relies upon the cluster table structure.

When a peer issues a query, it directly sends the query to
its cluster representative. Upon receiving a query from its
own cluster, the representative needs to first check whether
its own cluster contain relevant results and then locate the
appropriate clusters that are more likely to contain results.
In order to do so, it matches the query against the clus-
ter descriptions of all the clusters in the system including
its own. The representative then forwards the query only
to those cluster representatives for whose clusters it had a
match, i.e. the path expression forming the query existed in
their descriptions. If no cluster description gives a match,
then the query routing proceeds by sequentially selecting a
cluster and forwarding the query to it until the application
requirements are satisfied, that is, the required number of
results are attained.

Depending on the application, the representative can use
different strategies to propagate the query to the other clus-
ters. If the peer that issues the query is interested only in
the first result then the representative sends the query to its
own cluster (if the description gave a match) where the re-
sult is more likely to be obtained faster by exploiting local-
ity. If the issuing peer is interested in finding all the avail-
able results in the system, the query is forwarded to all the
matching clusters. Finally, if the issuing peer is interested
only in a numberMaxR of results the cluster representa-
tive may forward it only to the clusters for which their de-
scriptions returned the highest results (the frequency of the
corresponding path expressions appearance was the high-
est) and thus it is expected that they contain more results
for the query.

When a cluster representative receives a query from an-
other cluster representative or when a representative decides
that a query issued at its cluster concerns its own cluster,
inter-cluster routing is deployed. The representative checks
it cluster table and propagates the query to all the peers in its
cluster that contributed to the paths that the query matched.
This way, only the peers that may contain a relevant re-
sult are contacted, minimizing the network traffic and the
processing cost for the cluster peers. The peers that receive
a query first examine the query against their peer table and
if the evaluation returns a non-empty result set, they pro-
ceed on evaluating the query against their documents. They

finally, return their results to their cluster representative. Af-
ter receiving the results, the representative records the suc-
cessful query and sends the results to the peer or superpeer
that sent the query to it.

5. Workload-Aware Clustering

By consulting the cluster descriptions the cluster repre-
sentatives route queries to the appropriate clusters and lo-
cate the cluster a new peer belongs to. The cluster descrip-
tion can be enhanced by incorporating the most popular path
expressions from the query workload. By including in the
description, the most popular queries that are satisfied by a
given cluster, we include a description of the data that are
more often requested from this cluster. We expect that if
similar queries are posed in the future they will be more
efficiently routed to this cluster.

5.1. Workload Mining

We assume a query workload consisting of queries in the
form of simple path expressions. Each cluster representa-
tive records the queries that reach it and are satisfied by the
peers that belong to its cluster, thus creating thelocal query
workload.

Definition 3 (Local Query Workload) The local query
workload is defined for each cluster in the system as the
set of the queries that are satisfied by the given cluster, i.e.
they return a non empty result set when routed inside the
given cluster.

In order to record the local query workload efficiently, each
cluster representative constructs a path count table that is
used for summarizing the local query workload, called the
workload table.

Definition 4 (Workload Table)The workload table of each
cluster is as a path count table that consists of the local
query workload of the cluster.

Each query that reaches a cluster and is satisfied by its peers,
is inserted into its workload table. Thus, the workload table
provides the cluster representative with the information that
is needed in order to enhance the cluster description with
query workload information, i.e. the path expressions that
form the queries along with their corresponding frequency.

5.2. Workload-Aware Cluster Description

The workload table is periodically used along with the
cluster table to produce a new cluster description that better
describes a cluster after changes have occurred both on the

cluster contents or the workload of the system. This can be
done either after a period of time or a predefined number of
successful queries that have reached the cluster. The new
cluster description contains a percentage of its path expres-
sionsK that are extracted from the workload table and a
set ofN −K ∗ N path expressions extracted from its cur-
rent cluster table. ProcedureAdaptDescription (Alg. 4)
describes in detail how the new description is produced.

In particular, the procedure first sorts the entries of both
the cluster and the workload table in descending order of
frequency. Then the entries of the workload table are ex-
amined against the old cluster description. If an entry does
exist in the old description then it is automatically added to
the new cluster description. Otherwise, it is added in the
candidate list. The second step of the algorithm inserts the
entries from the candidate list into the new description un-
til the number of entries in the new description is equal to
N ∗ K. The new cluster description is finally filled with
the firstN − K ∗ N entries of the cluster table that have
not already been inserted into it. The final cluster descrip-
tion is a combination of frequent path expressions from the
workload and the cluster table.

Algorithm 4 AdaptDescription(ClusterTable, OldDescrip-
tion, WorkloadTable, K, N)

1: sort ClusterTable according tocount
2: sort WorkloadTable according tocount
3: NewDescription := NULL, Candidates :=

NULL, i = 0
4: while i < N ∗K and WorkloadTable.entry!=NULLdo
5: if WorkloadTable.entry∈ OldDescriptionthen
6: Add WorkloadTable.entry in NewDescription
7: i:=i+1
8: else
9: Add WorkloadTable.entry to Candidates

10: end if
11: end while
12: while Candidates.entry! = NULL andi < N ∗ K

do
13: Add Candidates.entry to NewDescription
14: i:=i+1
15: end while
16: while i < N andClusterTable.entry! = NULL do
17: if ClusterTable.entry /∈ NewDescription then
18: Add ClusterTable.entry to NewDescription
19: end if
20: end while
21: return NewDescription

By periodically using the AdaptDescription procedure,
the cluster descriptions change to reflect the changes in the
cluster contents which are recorded in the cluster table and
the local query workload which are recorded in the work-

Table 2. Input parameters

Parameter Default Value

of nodes 100
of clusters 5
of queries 200
of peers per cluster 20
of documents per peer 10
of path expressions in description 4
K 0.5
Size of document 2KB-8KB

load table. Thus, the rules that determine the cluster in
which a new peer joins also change, since they are derived
from the cluster description. The new peers that join the
system are thus appointed to the cluster that best matches
their contents according to the current conditions in the sys-
tem and not a static snapshot of an older state of the system
as is the case in the content-based method.

6. Performance Evaluation

To evaluate the performance of our approach we sim-
ulated a network of nodes and measured the performance
of query routing when applying our clustering algorithm.
Each node in the network stores 10 XML documents. For
the generation of the XML documents we use the ToXgene
generator [22]. We provide to the generator as input 5 dif-
ferent templates which produce documents belonging to 5
categories. From the 10 documents of each peer, 7 belong to
a single category and the remaining 3 are selected uniformly
at random. We fix the number of superpeers and therefore,
clusters in the system to 5, one for each of the document
categories.

We compared our approach of workload-aware cluster-
ing with an approach that creates a clustered overlay net-
work based solely on the content of the nodes without ex-
ploiting any workload knowledge. Thus, the content-based
approach includes in the cluster description only the path
expressions that appear more frequently in the nodes con-
tent. Finally, we also used an approach that selects the su-
perpeer each node attaches to at random and does not build
any cluster descriptions at all.

We used a network of 100 nodes and fixed the number of
peers per cluster to 20. As our performance metric we used
the number of hops required for the query routing protocol
to locate a specified number of results. We measure only the
hops required for locating a node and not the hops required
for returning the results to the node that issued the query.
Furthermore, once a query reaches a cluster it is forwarded
in parallel to all the nodes that belong in the cluster even if

10

15

20

25

30

35

40

45

50

55

0 100 (2.5%) 200 300 (7%) 400 500 (12%) 600 700 800 (18%) 900 1000 (22%)

nu
m

be
r

of
 h

op
s

number of results

random
content

workload

Figure 3. Routing performance with T1(QW)

the results that are attained exceed the number of specified
results requested.

We measure the performance of query routing while the
system evolves to demonstrate how our approach works in
a dynamic environment with changing conditions. In par-
ticular, we simulated batches of nodes joining the system
interleaved with batches of queries execution. After each
of the join batches the content-based approach updates its
description while the workload-aware approach updates the
cluster descriptions after a batch of peer join and a batch of
queries is completed.

We conducted three sets of experiments by using two
types of query workload with different characteristics
for each of them. In the first type of query workload
(T1(QW)), the queries follow the same distribution as the
data that belong to each peer. Queries for path expressions
that appear often in the data of the peers appear more of-
ten in the query workload. This type of workload favors
the content-based approach, since this approach includes
into the cluster description the path expressions that ap-
pear more frequently in the nodes data. As most queries in-
volve frequent data the content-based descriptions are able
to determine efficiently which clusters are relevant to most
queries. The second type of query workload (T2(QW))
consists mainly of queries for data items that not appear
very frequently in the nodes content. This type of work-
load clearly favors the workload-aware approach because
as more queries for unpopular data become more frequent
they are included into the appropriate cluster descriptions
making the routing of the next queries for this data more ef-
ficient. The content-based approach has no means of adapt-
ing to the demands of the query workload and thus the re-
quest for unpopular data cannot be aided with the use of the
cluster description.

Experiment 1. In this experiment, we fixed the number
of path expressions in the cluster description to 4, which is

about 6% of all the distinct path expressions that are con-
tained in a cluster table, and the percentageK of expres-
sions extracted from the query workload to 0.5.

Figure 3 illustrates our results when usingT1(QW). The
numbers in the x axis show the requested number of re-
sults and the percentage in the parenthesis denotes what per-
centage of the total number of available results this number
represents. Obviously, the random approach has the worst
overall performance. To locate the requested number of
results it requires almost twice as much hops as the other
two approaches. What is particularly interesting, is that the
workload-aware approach performs slightly better than the
content-based approach even for this type of workload that
obviously favors the content-based approach.

As shown in Fig. 4 when usingT2(QW), the workload-
aware approach outperforms both the content-based and the
random approach. We can see that for a number of re-
quested results below 200, the difference in the number
of hops between the content-based and the workload-aware
method is very significant, the content-based method addi-
tionally visits about 10% of the network nodes. After the
number of results becomes large enough, more than 200,
both approaches visit about the same number of nodes, but
still outperform the random method. This is the case when
the number of results in a single cluster do not suffice to at-
tain the requested number of results.
Experiment 2. In this experiment, we fixed the number of
path expressions in the cluster description to 1, and com-
pared the content-based approach, where 0% of the work-
load is included into the description (workload - 0%), with
the workload-aware approach where 100% of the path ex-
pressions in the description are derived from the query
workload (workload - 100%). This two cases represent
the two extremes, either using only content or only work-
load information into the cluster description. We conducted
the same experiment usingT1(QW) (Fig. 5) andT2(QW)
(Fig. 6).

When usingT1(QW), we see that by using just the
workload we still have slightly better performance from the
content-based approach. The performance is similar to the
case where we included into the description 50% from the
query workload and 50% from the peers content. This is ex-
tremely interesting, because using such a description does
not require having any knowledge on the content of the
peers in the system. Thus, it can be applied even if the su-
perpeer does not construct the path-count table for its clus-
ter.

When we useT2(QW), the performance of the
workload-based approach outperforms the content-based
approach until the number of requested results can no longer
be attained within a single cluster. The rest of the clusters
are visited also and their description is updated to show that
they contain the requested item. In future queries, the rout-

10

15

20

25

30

35

40

0 50 (12.5%) 100 (25%) 150 (37.5%) 200 (50%) 250 (62.5%) 300 (75%) 350 (87.5%) 400

nu
m

be
r

of
 h

op
s

number of results

random
content

workload

Figure 4. Routing performance with T2(QW)

10

11

12

13

14

15

16

17

18

19

20

21

0 100 200 300 400 500 600 700 800 900 1000

nu
m

be
r

of
 h

op
s

number of results

workload 0%
workload 100%

Figure 5. Workload vs Content using T1(QW)

ing protocol may falsely try to satisfy a query from these
clusters that only contain a limited number of results. Thus,
the performance of the workload-aware approach deterio-
rates.

Between the two extremes we can further investigate the
appropriate percentage of query workload information that
is included into the cluster description. However, with the
data set we used varying this percentage does not influence
the behavior of the workload-aware approach significantly.
We plan to further investigate this parameter by using other
data sets and types of query workload.
Experiment 3. In this last experiment, we fixedK to 0.5

and examined how the number of path expressions that are
included into a cluster description both for the workload-
aware and the content-based approach affect the routing
performance. Although one’s intuition is that the larger
the cluster description the better the performance of both
the methods, we observed that this does not hold. Smaller
descriptions with about 5% to 10% of all the path expres-

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 h

op
s

number of results

workload 0%
workload 100%

Figure 6. Workload vs Content using T2(QW)

sions in a cluster showed better performance than descrip-
tions with 50% of the path expressions, for both types of
the query workload. This is due to the fact that if we in-
clude too many paths in the description it seizes to be de-
scriptive of the cluster and becomes too general, allowing
all the queries to be routed to it. Thus, there is an optimal
number of path expressions that should be included into the
description. We plan to investigate how this optimal number
can be dynamically determined, by conducting more exper-
iments with different data sets and types of query workload.

7. Conclusions and Future Work

In this paper, we presented an approach for improving
the query routing performance in a p2p system in which
peers share data and resources described in XML format.
Our approach is based on building clusters of peers that
share similar data, by following a distributed procedure that
requires no global knowledge of the shared data distribu-
tion. The clustering procedure is based on the use of rules
that associate the existence of simple path expression pat-
terns in a peer’s data, to its likelihood of belonging to a spe-
cific cluster. The patterns that form the rules are selected
from both the most popular path expressions in the peers
content and the most popular queries in the query workload
of the system. Furthermore, we described how these rules
(i.e. the patterns that form them) change over time to re-
flect changes in the query workload and the content of the
peers. Our experimental results show our workload-aware
clustering procedure outperforms a strictly content-based
approach, especially in the case where the query workload
of the system mostly concerns data items that do not appear
frequently in the peers content.

We plan to extend our approach to an adaptive cluster-
ing procedure that will not only change the clustering rules
over time, but will also change the number of the clusters in

the system, either by merging similar clusters, or by creat-
ing new clusters. We also wish to consider load-balancing
parameters while changing the number of clusters. We also
plan to use more sophisticated data structures to summarize
the contents of each peer and cluster so as to minimize the
space overhead. Finally, we want to see how our clustering
procedure can be applied to p2p systems that use other over-
lay architectures and in particular, DHT-based p2p systems
that support more efficient lookups.

8. Acknowledgements

Work supported in part by the GSRT Greece-Cyprus
project SEMANET and the IP IST-15964 project AEOLUS.

References

[1] A. Aboulnaga, A.R. Alameldeen and J.F. Naughton.
Estimating the Selectivity of XML Path Expressions
for Internet Scale Applications. VLDB, 2001.

[2] M. Bawa, G.S. Manku and P. Raghavan. SETS: Search
Enhanced by Topic Segmentation. SIGIR, 2003.

[3] A. Crespo and H. Garcia-Molina. Routing Indices for
Peer-to-Peer Systems. ICDCS, 2002.

[4] A. Crespo and H. Garcia-Molina. Semantic Overlay
Networks for P2P Systems. Computer Science Depart-
ment, Stanford University. October 2002.

[5] C. Fellbaum. WordNet: An Electronic Lexical Data-
base. MIT Press, 1998.

[6] Knowbuddy’s Gnutella FAQ.
http://www.rixsoft.com/Knowbuddy/gnutellafaq.html.

[7] G. Kokkinidis and V. Christophides. Semantic Query
Routing and Processing in P2P Database Systems:
ICS-FORTH. 1st Int. Workshop P2P and DB, 2004.

[8] G. Koloniari and E. Pitoura. Content-Based Routing of
Path Queries in Peer-to-Peer Systems. EDBT, 2004.

[9] M.L. Lee, L.H. Yang, W. Hsu and X. Yang. XClust:
Clustering XML Schemas for Effective Integration.
CIKM, 2002.

[10] W. Lian, D.W. Cheung, N. Mamoulis and SM. Yiu. An
Efficient and Scalable Algorithm for Clustering XML
Documents by Structure. IEEE TKDE, Vol. 16(1),
2004.

[11] A. Loser, W. Siberski, M. Wolpers and W. Nejdl. In-
formation Integration in Schema-Based Peer-To-Peer
Networks. CAiSE, 2003.

[12] G. Miller. WordNet: A Lexical Database for English.
CACM, Vol. 38(11), November 1995.

[13] Napster. http://www.napster.com/

[14] V. Papadimos, D. Maier and K. Tufte. Distributed
Query Processing and Catalogs for Peer-to-Peer Sys-
tems. CIDR, 2003.

[15] N. Polyzotis and M. Garofalakis. Structure and Value
Synopses for XML Data Graphs. VLDB, 2002.

[16] N. Polyzotis, M. Garofalakis and Y. Ioannidis. Ap-
proximate XML Query Answers. SIGMOD, 2004.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp and
S. Shenker. A Scalable Content-Addressable Network.
SIGCOMM, 2001.

[18] C. Sartiani, P. Manghi, G. Ghelli and G. Conforti.
XPeer: A Self-organizing XML P2P Database Sys-
tem. 1st Int. Workshop P2P and DB, 2004.

[19] M. Schlosser, M. Sintek, S. Decker and W. Nejdl. A
Scalable and Ontology-Based P2P Infrastructure for
Semantic Web Services. 2nd Int. Conf. on Peer-to-
Peer Computing, 2002.

[20] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek and H.
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. SIGCOMM, 2001.

[21] M. Theobald, R. Schenkel and G. Weikum. Exploiting
Structure, Annotation, and Ontological Knowledge
for Automatic Classification of XML Data. WebDB,
2003.

[22] http://www.cs.toronto.edu/tox/toxgene/

[23] P. Triantafillou, C. Xiruhaki, M. Koubarakis and N.
Ntarmos. Towards High Performance Peer-to-Peer
Content and Resource Sharing Systems. CIDR, 2003.

[24] World Wide Web Consortium. Extensible
Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/REC-xml. October 2000.

[25] M.J. Zaki and C. C. Aggarwal. XRules: An Effective
Structural Classifier for XML Data. SIGKDD, 2003.

