
This work was supported by the ED 501 PENED’99 project
funded by G.S.R.T. of the Greek Ministry of Development and
the European Union.

MEMORY HIERARCHY EXPLORATION FOR LOW POWER
ARCHITECTURES IN EMBEDDED MULTIMEDIA APPLICATIONS

N. Kavvadias, A. Chatzigeorgiou, N. Zervas1, S. Nikolaidis

Electronics and Computers Div., Department of Physics
Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

1VLSI Design Laboratory, Department of Electrical Engineering
University of Patras, Patras 26500, Greece

ABSTRACT

Multimedia applications are characterized by an increased
number of data transfer and storage operations due to real time
requirements. Appropriate transformations can be applied at the
algorithmic level to improve crucial implementation
characteristics. In this paper, the effect of the data-reuse
transformations on power consumption, area and performance of
multimedia applications realized on embedded cores is
examined. As demonstrators, widely applicable video processing
algorithmic kernels, namely the row-column decomposition DCT
and its fast implementation found in MPEG-X, are used.
Experimental results prove that significant improvements in
power consumption can be achieved without performance
degradation by the application of data-reuse transformations in
combination with the use of a custom memory hierarchy.

1. INTRODUCTION

The popularity of multimedia systems used for computing and
exchanging information is rapidly increasing. With the
emergence of portable multimedia applications (mobile phones,
laptop computers, video cameras, etc) the power consumption
has been promoted to a major design consideration due to the
requirements for long battery life, large integration scale and the
related cooling and reliability issues [1][2]. Consequently, there
is great need for power optimization strategies, especially in
higher design levels, where the most significant savings are
achieved.

A number of code transformations can be applied to any
algorithm aiming at a memory hierarchy where copies of data
from larger memories that exhibit high data-reuse are stored to
additional layers of smaller memories. In this way, exploiting the
temporal locality of data memory references [1], the greater part
of the accesses is moved to smaller memories. Since accesses to
smaller levels of the memory hierarchy are less power costly,
significant power savings can be obtained [3].

Multimedia applications require increased processing power
for manipulating large amounts of data in real time. Two general
implementation approaches exist, to meet this demand. The first
is to use application specific integrated circuits (ASICs). This

solution leads to high performance, small area and power
consumption. However it completely lacks flexibility since only
a specific algorithm can be mapped on the system. The second
solution is to use embedded instruction set processors. This
solution requires increased area and power compared to the
ASIC solution while achieving lower performance. The main
advantage of such systems compared to the first solution is
programmability. For multimedia applications realized on
ASICs, the dominant factor in power consumption is the one
related to data storage and transfers [3]. However in
programmable platforms, the power consumption due to
instruction memory accesses usually dominates the power related
to data storage and transfers [4].

In this work, a formalized data storage and transfer
exploration methodology [1][3] is followed for the exploration
of the effect of data-reuse transformations on the implementation
of two well-known DSP algorithms. These transformations lead
to the determination of appropriate memory hierarchy schemes
with a number of intermediate on-chip small memory set
between the processor unit and the off-chip main memory. A
comparative study concerning power, performance and area,
indicates that the most effective solution can be achieved from
the right combination of data-reuse decisions and the
development of an appropriate data memory hierarchy.

2. DATA REUSE TRANSFORMATIONS

In data-dominated applications such as multimedia algorithms,
significant power savings can be achieved by developing a
custom memory organization that exploits the temporal locality
in memory accesses [1]. According to the proposed
methodology, data sets that are often being accessed in a short
period of time are identified and placed into smaller memories
leading to a new memory hierarchy. Hence, power savings can
be obtained by accessing heavily used data from smaller
foreground memories instead of large background memories.
Such an optimization requires architectural transformations that
consist of adding layers of smaller memories to which frequently
used data can be copied. Consequently, there is a trade off here;
on the one hand, power consumption is decreased because data
is now read mostly from smaller memories, while on the other
hand, power consumption is increased because extra memory

3260-7803-6725-1/01/$10.00 ©2001 IEEE

IEEE International Conference on Image Processing (ICIP'2001), Thessaloniki, Greece, October 7-10, 2001

transfers are introduced. An exploration of all architectural
alternatives is required for finding the optimum solution.

This data-reuse exploration is performed by applying a
number of code transformations to the original code, which are
determined by the group of data sets that are being used in the
algorithm. For the DCT algorithms the possible data-reuse
transformations together with the introduced levels in the
memory hierarchy, which correspond to reused data sets, are
shown in Fig. 1. These transformations are extracted according
to the methodology described in [3]. The parameters for these
algorithms are: the size of the current frame (N×M) and the
current block size (B×B). These transformations involve
memories for a line of current blocks (CB line) of size M×B, a
current block (CB) of size B×B and a line of current block pixel
line (CP line) of size B×1. The number of the corresponding
transformation and the size of the introduced memory, given
parametrically, annotate each rectangle in the figure.
Transformation #7 will not be taken into account due to its
proven inefficiency [3].

3. TARGET ARCHITECTURE

An appropriate target architecture is considered for the
implementation of the multimedia algorithms, to exploit all
possibilities for power consumption reduction resulting by the
application of the data-reuse transformations. The target
architecture is based on an embedded processing unit
(programmable or not programmable) communicating with data
memory and optionally with an instruction memory (ROM)
depending on whether the system is programmable or not. The
data memory hierarchy is fully customizable in terms of selecting
the number of memory layers and the size of the memory
modules at each layer. A global bus is considered for the
communication of memory blocks with the processor. Memory
blocks reside on-chip except for the first memory layer, which is
an off-chip memory.

In the proposed approach only the power due to accesses to
foreground and background memories is taken into account since
they constitute the higher percentage of the power dissipation of
the implementation [3]. According to the power model that has
been used, the power consumed on memory accesses is a
function of the memory size, the access frequency, the
technology, the number and the type (R and R/W) of ports. For
example, assuming for a given technology that all memories
have a single read-write port and that the power is linearly
proportional to the access frequency (f) [4], the power
consumption is given as:

()ddaccessaccess VwordslengthWordFfP ,#,_⋅= (1)

where the word length and the number of words define the used
memory size.

For the evaluation of the performance for the transformed
algorithms compared to the corresponding original codes,
simulations on a cycle-accurate RISC prosessor simulator
(ARMulator [7]) are performed. The performance metric is given
in the following equation:

() 1__ −= cyclesofNumePerformanc (2)

where performance denotes the execution speed and is inversely
proportional to the number of the required cycles to execute the
object code.

The corresponding area is estimated with the use of Mulder’s
model [5] characterized for an industrial part library.

4. APPLICATION DEMONSTRATOR: THE ROW-
COLUMN DECOMPOSITION DCT

As test vehicles, a typical and a fast Discrete Cosine Transform
(DCT) algorithm [6] will be used. The DCT algorithm, which
can exploit spatial redundancy, plays an important role in
multimedia data compression standards such as JPEG, MPEG-X
and H.26X. The usefulness of the DCT arises from its sparseness
due to the fact that a set of coefficients is produced that typically
has a lower dynamic range than the input pixel data. The fast
DCT is an optimized version of the typical one and runs with a
significantly higher computational speed.

The description of the row-column decomposition DCT
algorithm is given in C pseudo-code form in Fig. 2. In the row-
column decomposition version of the DCT, the transformation is
separable into 1-D DCTs, and the 2-dimensional algorithm
results, by performing row-wise 1-D transform followed by
column-wise 1-D transform with intermediate transposition.

The algorithm structure basically consists of a double nested
loop including a triple nested one. For the calculation of the
coefficients, a frame size of NxM and blocks of BxB pixels are
considered. In the specific example the luminance component of
QCIF frames (N=144, M=176) is DCT coded in 8x8 blocks
(B=8) in a scanner-like way.

5. DESIGN EXPLORATION OF THE DCT
ALGORITHMS

As already mentioned, two design approaches exist for the
implementation of multimedia applications, Application Specific
Integrated Circuits (ASICs) or Application Specific Instruction
set architecture Processors (ASIPs) and general-purpose
processors. Since the instruction memory related power
component is different for each approach, each case has to be
studied separately.

In the case of ASICs the total power budget is dominated by
the power component due to accesses to data memory.
Application specific processors (ASIPs) with a custom
instruction set suited to the target algorithm are also considered
to belong in this case. Since their instruction set is tailored to the
target algorithm to achieve fast execution, the resulting code size
and the number of executed program cycles is small. These in
turn lead to a smaller number of accesses to the instruction
memory and reduced memory size reducing significantly the
power component due to instruction memory accesses. In Fig. 3,
the energy consumption due to accesses to data memory layers
for the processing of one frame is presented for both algorithms
(originals) and all the transformations. As it can be seen the fast
version of the DCT algorithm presents almost five times lower
power consumption compared to the typical one. The
transformations affect the power component in an analogous way
for the two algorithms. However, the percentage reduction of
power in case of the typical algorithm is much higher. In both
cases the most power efficient data-reuse transformation is #3. A

327

power reduction factor about of 10 and 3 is achieved for the
typical and fast DCT, respectively. It can be noticed that
transformation #5 (as well as #7, which is not given)
corresponds to an inefficient memory architecture. The
requirements in memory area (excluded the main off-chip
memory) for both algorithms and all the transformations are
given in Fig. 4. The introduction of additional data memory
layers comes with an inevitable area penalty. However due to the
small size of the CB buffer, transformations #3 and #4 impose
acceptable area occupation increase. As it is shown, the case for
the fast DCT presents slightly higher requirements.

If a general-purpose processor is used, the power component
due to instruction memory accesses is not negligible and has to
be taken into account for the estimation of the total power
consumption. In order to prove the dominant role of instruction
memory in the overall power consumption, simulations using the
ARMulator have been performed [7]. In Fig. 5 the instruction
memory energy consumption is shown as part of the total power
consumption, for both algorithms. The power consumption due
to instruction memory is about 1.5 (6) and 5 (30) times higher
than that of data for the fast and typical DCT original
(transformed) algorithms, respectively. Transformation #3
remains the most power efficient solution for both algorithms. It
has to be mentioned, that in the results shown in Fig. 5, the
power consumption due to instruction memory accesses is
overestimated. That is because no instruction caching was taken
into account, which for data dominated applications (where
cache misses do not occur frequently) would result in a smaller
number of accesses to the instruction memory.

The code size graph depicted in Fig. 6, shows that the
implementation of the fast DCT on a programmable platform is
more area demanding than the standard DCT, since area is a
function of code size. In addition to that, in some cases the
application of transformations can even reduce code size in
benefit of instruction memory area demands.

Almost no performance penalty is introduced by the
application of the data-reuse transformations, as shown in Fig. 7.
This is due to: (a) The small number of additional control
operations introduced in the transformed algorithm. This is
because the algorithm presents high regularity since no
conditional statements exist within loops. (b) The relative
reduction of data addressing and arithmetic operations in the
transformed algorithm as a result of simplified addressing
equations. This conclusion has been verified by profiling trace
data obtained from executing the object code by the instruction-
level profiler software IPROF reported in [8]. Consequently, the
selection of the most appropriate memory hierarchy should be
based only on power criteria, whereas in some cases area
occupation could be considered.

6. CONCLUSIONS

In this paper the effect of data-reuse transformations on the
energy consumption, area and performance of embedded systems
implementing multimedia applications has been presented. A
number of data-reuse transformations have been applied on DCT
algorithms to achieve significant power savings by moving a
large amount of background accesses to smaller foreground
memory banks. The obtained results indicated a reduction in data
memory power consumption of about 70-90% when custom
memory hierarchy is used compared to the case without memory

hierarchy. If a general-purpose processor is used, the instruction
memory power dissipation has to be considered, since it often
dominates total power consumption. It has been proven that with
this methodology, the hardware-software designer is given an
additional degree of freedom for implementing an energy-
efficient architecture for multimedia applications.

REFERENCES
[1] F. Catthoor, S. Wuytack et al, Custom Memory

Management Methodology, Kluwer Academic Publishers,
Boston, 1998.

[2] A. Chandrakasan and R. Brodersen, Low Power Digital
CMOS Design, Kluwer Academic Publishers, Boston,
1995.

[3] S. Wuytack, J-P. Diguet, F. Cathhoor, H. De Man,
“Formalized Methodology for Data Reuse Exploration for
Low-Power Hierarchical Mappings”, special issue of IEEE
Transactions on VLSI Systems on low power electronics
and Design, Vol. 6, No. 4, pp. 529-537, December 1998.

[4] N. D. Zervas, K. Masselos, C.E. Goutis, “Data-reuse
exploration for low-power realization of multimedia
applications on embedded cores”, Proc. Of 9th Int.
Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS’99), pp. 71-80, October 1999.

[5] J.M. Mulder, N.T. Quach, N.J. Flynn, “An area model for
on-chip memories and its application”, IEEE Journal of
Solid-State Circuits, Vol. SC-26, pp. 98-105, Feb 1991.

[6] K.R. Rao, P. Yip, Discrete Cosine Transform - Algorithms,
Advantages, Applications, Academic Press Inc., London,
1990.

[7] ARM software development toolkit, v2.11, Advanced RISC
Machines, Copyright 1996-7.

[8] P. Kuhn, Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation, Kluwer
Academic Publishers, Boston, 1999.

Figure 1. Search tree for data reuse decision for the DCT
algorithm

328

/* Transposition of the input data array */
for(i=0; i<N/B; i++)
 for(j=0; j<M/B; j++)
{
 /* Transposition of the block being processed */
}

 /* First 1-D DCT for the rows of the initial data array */
 for(i=0; i<N/B; i++) /* For all blocks in a frame */
 for(j=0; j<M/B; j++)
{
 for(k=0; k<B; k++){ /* For all pixels in a block */
 for(m=0; m<B; m++){
 temp=0;
 for(l=0; l<B; l++)
 temp+=coeff[m][l]*image[B*i+l][B*j+k];

 output1[B*i+m][B*j+k]=temp;
 }
 }
}
/* Same steps follow for transposition of the 1st output data
array and the application of 1-D DCTs for the columns of the 1st

output data array */
Figure 2. The row-column decomposition DCT algorithm

Figure 3. Data Memory Energy Consumption

Figure 4. Data Memory Area Occupation

Figure 5. Instruction Energy Consumption vs Total Energy
Consumption (A�typical, B�fast)

Figure 6. Code size for various transformations

Figure 7. Code performance for various transformations

329

