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ABSTRACT  
The importance of low power consumption is widely 
acknowledged due to the increasing use of portable 
devices, which require minimizing the consumption of 
energy. The energy in a computational system depends 
heavily on the software being executed, since it 
determines the activity in the underlying circuitry. In this 
paper we introduce the notion of energy complexity of an 
algorithm for estimating the required energy consumption. 
As test vehicle we employ matrix multiplication 
algorithms and from the results it can be observed that 
energy complexity in combination with computational 
complexity, provides an accurate estimation for the 
energy consumed in the system. 
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1.  Introduction 
 
The vast majority of microprocessors being produced 
today are incorporated in embedded systems, which are 
mainly included in portable devices. The later ones 
require the lowest power operation achievable, since they 
rely on batteries for power supply. Furthermore, high 
power consumption raises other important issues, such as 
the cost associated with cooling the system, due to the 
generated heat, as well as reliability concerns. A lot of 
optimization efforts have been devoted to restructuring 
the hardware used, to decrease power consumption. 
However, recent research has proved that software is the 
dominant factor in the power consumption of a computing 
system [1], since it determines the number of energy 
consuming “0” to “1” transitions in the underlying digital 
circuitry. Here, we attempt, in analogy to the well 
established computational complexity (time complexity), 
to estimate the energy complexity for a given algorithm, 
as a means to characterize the expected energy 
consumption. 
 
 
2.  Energy Consumption 
 
To clarify the reasons why energy consumption of a 
program varies, it is necessary to name the main sources 
of power consumption in a simplified model of an 

embedded system. System power falls into mainly two 
categories, each of which is described next. 
 
2.1 Processor Power  
When instructions are fetched, decoded or executed in the 
processor, the nodes in the underlying CMOS digital 
circuits switch states. Without getting into details, the 
dynamic power dissipation for a digital system (the power 
consumed during the switching of gates) is given by [2]: 

clkDDLavg fVCaP ⋅⋅⋅= 2  

where CL is the total capacitance being switched, VDD is 
the supply voltage, fclk is the clock frequency, and α is the 
node transition activity factor. This factor essentially 
represents the average number of times a given node in 
the circuit makes a power consuming transition (from 
logic “low” to logic “high”). For a computational system, 
this factor is primarily determined by the executed 
software, which dictates the operation (signal transitions) 
in the circuit. 
For any computing system, the switching activity 
associated with the execution of instructions in the 
processing unit, constitutes the so-called base energy cost 
[1]. The change in circuit state between consecutive 
instructions is captured by the overhead or inter-
instruction cost. To calculate the total energy, which is 
dissipated, all that is needed is to sum up all base and 
overhead costs for a given program. 
 
2.2 Memory power  
We assume that the system architecture consists of two 
memories, namely the instruction memory and data 
memory (Harvard architecture) [3] and that there is no 
cache memory. The energy consumption of the instruction 
memory depends on the code size and on the number of 
executed instructions that correspond to instruction 
fetches, whereas that of the data memory depends on the 
volume of data being processed by the application and on 
how often the later accesses data. 
 
 
3.  Energy Complexity 
 
Any computational complexity measure is related to the 
running time [4]. The running time of an algorithm on a 
particular input is the number of primitive operations or 
“steps” executed. We shall assume a generic one-
processor, random-access machine (RAM) model of 



computation as our implementation technology and 
understand that our algorithms will be implemented as 
computer programs. In the RAM model, instructions are 
executed one after another, with no concurrent operations 
[4]. It is usually assumed that a constant amount of time is 
required to execute each line code. This viewpoint is 
keeping with the RAM model, and also reflects how the 
pseudocode would be implemented on most actual 
computers. The RAM model contains instructions 
commonly found in real computers: arithmetic (add, 
subtract, multiply, remainder, floor, ceiling), data 
movement (load, store, copy), and control (conditional 
and unconditional branch, subroutine call and return). 
Each such instruction takes a constant amount of time. 
In analogy to the computational complexity as described 
in [4] the energy complexity of an algorithm could be 
used to characterize the energy dissipation. The aim here 
is to extract a polynomial expression of the number of 
data memory accesses in addition to the expressions of the 
number of executed primitive operations or instructions. 
As a result, the resources of interest are not time or space 
but rather energy dissipation. In the following examples 
we do not employ the Big O notation so as to reveal even 
small differences between the algorithms under study. 
In this way it is possible to come up with a polynomial 
that represents the number of accesses to the data 
memory. Since each access to a memory has a known 
(measurable) energy cost [5] the data memory energy 
consumption can be easily calculated. 
On the other hand, polynomial expressions of the number 
of primitive operations are suitable for extracting the 
energy consumed within the processor and in the 
instruction memory. Since each primitive operation maps 
approximately to an independent assembly instruction 
whose energy consumption can be measured [6] and since 
the number of accesses to the instruction memory are 
equal to the executed assembly instructions, these two 
energy components can be easily obtained. 
Thus, the total energy complexity would be calculated as: 

memdatameminstrproctotal EcEcEcE _3_21 ⋅+⋅+⋅=  
where:  
c1 · Eproc corresponds to the processor energy and is a 
polynomial expression of the number of primitive 
operations times a coefficient c1. Coefficient c1 
corresponds to the average energy consumed during the 
execution of an assembly instruction and can be 

accurately estimated from physical power measurements 
[6] and profiling of representative applications.  
c2 · Einstr_mem corresponds to the instruction memory 
energy and is a polynomial expression of the number of 
primitive operations times a coefficient c2. Coefficient c2 
corresponds to the energy cost of an access to the 
instruction memory. 
c3 · Edata_mem corresponds to the data memory energy and is 
a polynomial expression of the number of memory 
accesses times a coefficient c3. Coefficient c3 corresponds 
to the energy cost of an access to the data memory. 
The coefficients c1, c2 and c3 are dependent on the 
computer system used and Etotal is the total calculated 
energy complexity of the algorithm under study. 
However, a calibration for the corresponding coefficient 
values should be performed for each target platform. 
 
 
4.  Framework Setup and Results 
 
To evaluate the proposed energy complexity, a 
generalized target architecture was considered (Fig.1). It 
is based on the ARM7 integer processor core [7], which is 
widely used in embedded applications due to its 
promising MIPS/mW performance [8]. The process that 
has been followed during the conduction of the 
aforementioned experiments (Fig. 2) begins with the 
compilation of each C++ code with the use of the 
compiler of the ARM Developer Suite [9]. At this stage, 
we were able to obtain the code size. Next and after the 
debugging, a trace file was produced which logged 
instructions and memory accesses. The debugger provided 
the total number of cycles. A profiler was specially 
developed for parsing the trace file serially, in order to 
measure the memory accesses to the instruction memory 
(OPCODE accesses) and the memory accesses to the data 
memory (DATA accesses). The profiler calculated also 
the dissipated energy (base + interinstruction energy) 
within the processor core. Finally, with the use of an 
appropriate memory simulator (provided by an industrial 
vendor), the energy consumed in the data and instruction 
memories was measured. 
As test vehicle, three algorithms from matrix algebra have 
been examined, which all perform matrix-matrix 
multiplication employing (the corresponding programs in 
C are shown in Table 1) : 
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Fig. 1. Target Architecture. 
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Fig. 2. Experiment set up for evaluating energy consumption. 

 
Table 1. Matrix-matrix multiplication algorithms. 

mmdot.c mmsax.c mmout.c 
i=0; 
while (i<m) { 
 j=0; 
  while (j<n) { 
   c=0; 
   k=0; 
   while (k<p) { 
    c=c+ 
    (*(&A[i][0]+k))* 
    (*(&B[0][j]+k*n)); 
    k++; 
   } 
   C[i][j]=c; 
   j++; 
  } 
 i++; 
} 

k=0; 
while (k<n) { 
 j=0; 
  while (j<m) { 
   i=0; 
   while (i<p) { 
    (&C[0][k]+j*n)= 
    *(&A[0][0]+i+j*p)* 
    (*(&B[0][k]+i*n))+ 
    (&C[0][k]+j*n); 
    i++; 
   } 
   j++; 
  } 
 k++; 
} 

k=0; 
while (k<p) { 
 i=0; 
  while (i<m) { 
   j=0; 
   while (j<n) { 
    (&C[0][0]+i*n+j)= 
    *(&A[0][k]+i*p)* 
    (*(&B[k][0]+j))+ 
    (&C[0][0]+i*n+j); 
    j++; 
   } 
   i++; 
  } 
 k++; 
} 

 
 
  



a) a dot product computation (mmdot.c); b) a generalized 
SAXPY operation(mmsax.c); and c) an outer product 
update (mmout.c) [10]. The matrix multiplication is 
mathematically formulated as: 

( )nmnppmABC ××× ℜ→ℜ×ℜ=  
The second and third algorithm had no difference from 
our point of view on energy consumption and therefore 
we concentrated on the first two algorithms.  
Next, we calculated the energy complexity of the 
algorithms. In the first one, there are two data accesses in 
the inner loop (elements of the matrices A and B) and one 
data access in the second loop (accessing elements of the 
matrix C, which contains the desired result of the 
multiplication). Thus the energy complexity associated 
with the data memory is calculated as: 

( )mnmnpE memdata ⋅+⋅⋅⋅= 21_  
In the second source code, it is the inner loop that has four 
data accesses (the resulting matrix is accessed two times, 
whereas each of the matrices containing the initial 
numbers is accessed once). As a result, the energy 
complexity of the generalized SAXPY operation is 
calculated to be  

mnpE memdata ⋅⋅⋅= 42_  
The computational complexity for the first algorithm 
(reflecting the energy complexity of the processor and the 
instruction memory as already described) was 

( )mmnmnpEE meminstrproc ⋅+⋅⋅+⋅⋅⋅== 9881_1  
while for the second one it was  

( )mmnmnpEE meminstrproc ⋅+⋅⋅+⋅⋅⋅== 96122_2  
In Table 2, the actual energy consumption for all system 
components (processor, instruction and data memory) is 
presented, based on the power models that have been 
developed, and using data from the ARM processor 

simulator. We can infer that although the number of 
executed assembly instructions has increased (by 28.5%) 
from the first algorithm (dot product) to the second 
(SAXPY), the energy consumed by the data memory has 
disproportionally increased (by 71.5%). Thus, considering 
only the computational complexity of an algorithm is not 
a safe method for estimating the approximate extent to 
which the data memory accesses will reach and as a result 
an inaccurate estimate of the dissipated energy might be 
obtained. On the other hand, energy complexity as 
proposed in this paper, complementary to the 
computational complexity can offer an improved way of 
estimating the energy consumption. In our example, the 
calculated doubling of data memory energy complexity 
from the dot product computation  to the generalized 
SAXPY operation (namely 100% increase), is much 
closer to the observed increase of 71.5% in the data 
memory energy consumed and data memory accesses than 
the increase predicted by the computational complexity.  
Fig. 3 illustrates the simulated and calculated results, 
when the complete energy complexity polynomial is 
considered, taking into account all three system 
components. The diagram shows the number of 
instructions, the simulated and estimated energy 
consumption of the second algorithm, normalized over the 
corresponding values of the first algorithm and thus the 
accuracy by which energy is estimated. It becomes 
obvious that energy complexity is a substantially better 
indicator than the computational complexity, regarding 
energy. Such an improvement in accuracy becomes 
extremely important as the size of the data memory (and 
therefore the corresponding energy) become larger. That 
is because in case of larger data memory sizes, the 
contribution of the data memory to the overall energy 
consumption becomes crucial. 
 

Table 2. Energy consumption of matrix multiplication algorithms (mJ). 
3x3 mmdot.c mmsax.c mmout.c 
Cycles 564 726 750 
Executed Assembly Instr. 410 527 561 
Opcode Mem. Accesses 410 527 561 
Data  Mem.  Accesses 63 108 108 
Processor Energy 0.000723525 mJ 0.000933756 mJ 0.000964283 mJ 
Instr_mem. Energy 0.001472 mJ 0.001768 mJ 0.001848 mJ 
Data_mem.  Energy 0.000859 mJ 0.001473 mJ 0.001474 mJ 
Total Energy 0.003054525 mJ 0.004174756 mJ 0.004286283 mJ 
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Fig. 3. Comparison of cycles, experimental energy consumption and estimated energy consumption (normalized 

values) 
 
5.  Conclusions and Future Work 
 
Energy consumption is nowadays a major concern for the 
development of portable computing devices and it has 
been shown that software affects the energy dissipation to 
a large extent. In this paper, we have introduced the 
notion of energy complexity of an algorithm as a means to 
estimate the effect of data and instruction memory 
accesses to the total power consumption of an algorithm. 
An example of matrix multiplication algorithms has 
demonstrated the improvement that can be gained by 
considering energy complexity polynomials for the 
corresponding algorithms. 
Future research on this field should include 
experimentation on larger and more complicated 
programs to establish the accuracy of the energy 
complexity as an estimate for energy consumption. 
Furthermore, the effect on energy of cache memories, 
possibly with multiple levels, as well as that of other 
architectural features should be studied.  
 
 
References: 
 
[1] V. Tiwari, S. Malik, A. Wolfe, Power analysis of 
embedded software: A first step towards software power 
minimization, IEEE Transactions on VLSI Systems, Vol. 2 
(1994), pp. 437-445. 

[2] A. Chandrakasan, R. Brodersen, Low power digital 
CMOS design (Kluwer Academic Publishers, Boston, 
1995). 
[3] J.L.Henessy, D.A.Patterson, Computer architecture: A 
quantitative approach (Morgan Kaufman, San Mateo, 
CA, 1990). 
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. 
Stein, Introduction to algorithms, 2nd edn. (MIT Press 
2001). 
[5] P. Landman, Low-power architectural design 
methodologies, Doctoral Dissertation (U.C., Berkeley, 
1994). 
[6] N. Kavvadias, P. Neofotistos, S. Nikolaidis, K. 
Kosmatopoulos, T. Laopoulos, Measurements analysis of 
the software-related power consumption of 
microprocessors, IEEE Transactions on Instrumentation 
and Measurement, vol. 53, no 4, pp.1106-1112, August 
2004. 
[7]http://www.arm.com/armtech/ARM7TDMI?OpenDocu
ment, ARM Products and Solutions. 
[8] S. Furber, ARM system-on-chip architecture (Addison-
Wesley, Harlow, UK, 2000). 
[9] A. Chatzigeorgiou, D. Andreou, S. Nikolaidis, 
Description of the software power estimation framework, 
IST-2000-30093/EASY Project, Deliverable 24, February 
2003, URL: http://electronics.physics.auth.gr/easy. 
[10] G.H.Golub, C.F.van Loan, Matrix computations 
(John Hopkins University Press, Baltimore, 1996). 

 
 
 
 


