
ENERGY COMPLEXITY OF SOFTWARE IN EMBEDDED SYSTEMS

Kostas Zotos, Andreas Litke, Alexander Chatzigeorgiou, Spyros Nikolaidis1, George Stephanides
Dept. of Applied Informatics, University of Macedonia, 54006 Thessaloniki, Greece

1Dept. of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
(zotos@uom.gr, litke@uom.gr, achat@uom.gr, snikolaid@physics.auth.gr, steph@uom.gr)

ABSTRACT
The importance of low power consumption is widely
acknowledged due to the increasing use of portable
devices, which require minimizing the consumption of
energy. The energy in a computational system depends
heavily on the software being executed, since it
determines the activity in the underlying circuitry. In this
paper we introduce the notion of energy complexity of an
algorithm for estimating the required energy consumption.
As test vehicle we employ matrix multiplication
algorithms and from the results it can be observed that
energy complexity in combination with computational
complexity, provides an accurate estimation for the
energy consumed in the system.

KEY WORDS
software design and implementation, computational
complexity, low-power design, energy estimation

1. Introduction

The vast majority of microprocessors being produced
today are incorporated in embedded systems, which are
mainly included in portable devices. The later ones
require the lowest power operation achievable, since they
rely on batteries for power supply. Furthermore, high
power consumption raises other important issues, such as
the cost associated with cooling the system, due to the
generated heat, as well as reliability concerns. A lot of
optimization efforts have been devoted to restructuring
the hardware used, to decrease power consumption.
However, recent research has proved that software is the
dominant factor in the power consumption of a computing
system [1], since it determines the number of energy
consuming “0” to “1” transitions in the underlying digital
circuitry. Here, we attempt, in analogy to the well
established computational complexity (time complexity),
to estimate the energy complexity for a given algorithm,
as a means to characterize the expected energy
consumption.

2. Energy Consumption

To clarify the reasons why energy consumption of a
program varies, it is necessary to name the main sources
of power consumption in a simplified model of an

embedded system. System power falls into mainly two
categories, each of which is described next.

2.1 Processor Power
When instructions are fetched, decoded or executed in the
processor, the nodes in the underlying CMOS digital
circuits switch states. Without getting into details, the
dynamic power dissipation for a digital system (the power
consumed during the switching of gates) is given by [2]:

clkDDLavg fVCaP ⋅⋅⋅= 2

where CL is the total capacitance being switched, VDD is
the supply voltage, fclk is the clock frequency, and α is the
node transition activity factor. This factor essentially
represents the average number of times a given node in
the circuit makes a power consuming transition (from
logic “low” to logic “high”). For a computational system,
this factor is primarily determined by the executed
software, which dictates the operation (signal transitions)
in the circuit.
For any computing system, the switching activity
associated with the execution of instructions in the
processing unit, constitutes the so-called base energy cost
[1]. The change in circuit state between consecutive
instructions is captured by the overhead or inter-
instruction cost. To calculate the total energy, which is
dissipated, all that is needed is to sum up all base and
overhead costs for a given program.

2.2 Memory power
We assume that the system architecture consists of two
memories, namely the instruction memory and data
memory (Harvard architecture) [3] and that there is no
cache memory. The energy consumption of the instruction
memory depends on the code size and on the number of
executed instructions that correspond to instruction
fetches, whereas that of the data memory depends on the
volume of data being processed by the application and on
how often the later accesses data.

3. Energy Complexity

Any computational complexity measure is related to the
running time [4]. The running time of an algorithm on a
particular input is the number of primitive operations or
“steps” executed. We shall assume a generic one-
processor, random-access machine (RAM) model of

computation as our implementation technology and
understand that our algorithms will be implemented as
computer programs. In the RAM model, instructions are
executed one after another, with no concurrent operations
[4]. It is usually assumed that a constant amount of time is
required to execute each line code. This viewpoint is
keeping with the RAM model, and also reflects how the
pseudocode would be implemented on most actual
computers. The RAM model contains instructions
commonly found in real computers: arithmetic (add,
subtract, multiply, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional
and unconditional branch, subroutine call and return).
Each such instruction takes a constant amount of time.
In analogy to the computational complexity as described
in [4] the energy complexity of an algorithm could be
used to characterize the energy dissipation. The aim here
is to extract a polynomial expression of the number of
data memory accesses in addition to the expressions of the
number of executed primitive operations or instructions.
As a result, the resources of interest are not time or space
but rather energy dissipation. In the following examples
we do not employ the Big O notation so as to reveal even
small differences between the algorithms under study.
In this way it is possible to come up with a polynomial
that represents the number of accesses to the data
memory. Since each access to a memory has a known
(measurable) energy cost [5] the data memory energy
consumption can be easily calculated.
On the other hand, polynomial expressions of the number
of primitive operations are suitable for extracting the
energy consumed within the processor and in the
instruction memory. Since each primitive operation maps
approximately to an independent assembly instruction
whose energy consumption can be measured [6] and since
the number of accesses to the instruction memory are
equal to the executed assembly instructions, these two
energy components can be easily obtained.
Thus, the total energy complexity would be calculated as:

memdatameminstrproctotal EcEcEcE _3_21 ⋅+⋅+⋅=
where:
c1 · Eproc corresponds to the processor energy and is a
polynomial expression of the number of primitive
operations times a coefficient c1. Coefficient c1
corresponds to the average energy consumed during the
execution of an assembly instruction and can be

accurately estimated from physical power measurements
[6] and profiling of representative applications.
c2 · Einstr_mem corresponds to the instruction memory
energy and is a polynomial expression of the number of
primitive operations times a coefficient c2. Coefficient c2
corresponds to the energy cost of an access to the
instruction memory.
c3 · Edata_mem corresponds to the data memory energy and is
a polynomial expression of the number of memory
accesses times a coefficient c3. Coefficient c3 corresponds
to the energy cost of an access to the data memory.
The coefficients c1, c2 and c3 are dependent on the
computer system used and Etotal is the total calculated
energy complexity of the algorithm under study.
However, a calibration for the corresponding coefficient
values should be performed for each target platform.

4. Framework Setup and Results

To evaluate the proposed energy complexity, a
generalized target architecture was considered (Fig.1). It
is based on the ARM7 integer processor core [7], which is
widely used in embedded applications due to its
promising MIPS/mW performance [8]. The process that
has been followed during the conduction of the
aforementioned experiments (Fig. 2) begins with the
compilation of each C++ code with the use of the
compiler of the ARM Developer Suite [9]. At this stage,
we were able to obtain the code size. Next and after the
debugging, a trace file was produced which logged
instructions and memory accesses. The debugger provided
the total number of cycles. A profiler was specially
developed for parsing the trace file serially, in order to
measure the memory accesses to the instruction memory
(OPCODE accesses) and the memory accesses to the data
memory (DATA accesses). The profiler calculated also
the dissipated energy (base + interinstruction energy)
within the processor core. Finally, with the use of an
appropriate memory simulator (provided by an industrial
vendor), the energy consumed in the data and instruction
memories was measured.
As test vehicle, three algorithms from matrix algebra have
been examined, which all perform matrix-matrix
multiplication employing (the corresponding programs in
C are shown in Table 1) :

ARM7 integer
processor core

(3stage-pipeline) B
us

 In
te

rf
ac

e

ROM
controller

RAM
controller

Memory
interface
signals

A [31:0]

D [31:0]

Instruction
memory

Chip boundary

Data
memory

ARM7 integer
processor core

(3stage-pipeline) B
us

 In
te

rf
ac

e

ROM
controller

RAM
controller

Memory
interface
signals

A [31:0]

D [31:0]

Instruction
memory

Chip boundary

Data
memory

Fig. 1. Target Architecture.

source code

ARM SDT v2.50

ARM Debugger

Trace file

Profiler

Processor
Energy

ROM requirements

#instructions
#cycles

#memory accesses

compile

execute

Data Memory Energy
Instruction Memory Energy

Memory Power Model

source code

ARM SDT v2.50

ARM Debugger

Trace file

Profiler

Processor
Energy

ROM requirements

#instructions
#cycles

#memory accesses

compile

execute

Data Memory Energy
Instruction Memory Energy

Memory Power Model

Fig. 2. Experiment set up for evaluating energy consumption.

Table 1. Matrix-matrix multiplication algorithms.

mmdot.c mmsax.c mmout.c
i=0;
while (i<m) {
 j=0;
 while (j<n) {
 c=0;
 k=0;
 while (k<p) {
 c=c+
 (*(&A[i][0]+k))*
 (*(&B[0][j]+k*n));
 k++;
 }
 C[i][j]=c;
 j++;
 }
 i++;
}

k=0;
while (k<n) {
 j=0;
 while (j<m) {
 i=0;
 while (i<p) {
 (&C[0][k]+j*n)=
 *(&A[0][0]+i+j*p)*
 (*(&B[0][k]+i*n))+
 (&C[0][k]+j*n);
 i++;
 }
 j++;
 }
 k++;
}

k=0;
while (k<p) {
 i=0;
 while (i<m) {
 j=0;
 while (j<n) {
 (&C[0][0]+i*n+j)=
 *(&A[0][k]+i*p)*
 (*(&B[k][0]+j))+
 (&C[0][0]+i*n+j);
 j++;
 }
 i++;
 }
 k++;
}

a) a dot product computation (mmdot.c); b) a generalized
SAXPY operation(mmsax.c); and c) an outer product
update (mmout.c) [10]. The matrix multiplication is
mathematically formulated as:

()nmnppmABC ××× ℜ→ℜ×ℜ=
The second and third algorithm had no difference from
our point of view on energy consumption and therefore
we concentrated on the first two algorithms.
Next, we calculated the energy complexity of the
algorithms. In the first one, there are two data accesses in
the inner loop (elements of the matrices A and B) and one
data access in the second loop (accessing elements of the
matrix C, which contains the desired result of the
multiplication). Thus the energy complexity associated
with the data memory is calculated as:

()mnmnpE memdata ⋅+⋅⋅⋅= 21_
In the second source code, it is the inner loop that has four
data accesses (the resulting matrix is accessed two times,
whereas each of the matrices containing the initial
numbers is accessed once). As a result, the energy
complexity of the generalized SAXPY operation is
calculated to be

mnpE memdata ⋅⋅⋅= 42_
The computational complexity for the first algorithm
(reflecting the energy complexity of the processor and the
instruction memory as already described) was

()mmnmnpEE meminstrproc ⋅+⋅⋅+⋅⋅⋅== 9881_1
while for the second one it was

()mmnmnpEE meminstrproc ⋅+⋅⋅+⋅⋅⋅== 96122_2
In Table 2, the actual energy consumption for all system
components (processor, instruction and data memory) is
presented, based on the power models that have been
developed, and using data from the ARM processor

simulator. We can infer that although the number of
executed assembly instructions has increased (by 28.5%)
from the first algorithm (dot product) to the second
(SAXPY), the energy consumed by the data memory has
disproportionally increased (by 71.5%). Thus, considering
only the computational complexity of an algorithm is not
a safe method for estimating the approximate extent to
which the data memory accesses will reach and as a result
an inaccurate estimate of the dissipated energy might be
obtained. On the other hand, energy complexity as
proposed in this paper, complementary to the
computational complexity can offer an improved way of
estimating the energy consumption. In our example, the
calculated doubling of data memory energy complexity
from the dot product computation to the generalized
SAXPY operation (namely 100% increase), is much
closer to the observed increase of 71.5% in the data
memory energy consumed and data memory accesses than
the increase predicted by the computational complexity.
Fig. 3 illustrates the simulated and calculated results,
when the complete energy complexity polynomial is
considered, taking into account all three system
components. The diagram shows the number of
instructions, the simulated and estimated energy
consumption of the second algorithm, normalized over the
corresponding values of the first algorithm and thus the
accuracy by which energy is estimated. It becomes
obvious that energy complexity is a substantially better
indicator than the computational complexity, regarding
energy. Such an improvement in accuracy becomes
extremely important as the size of the data memory (and
therefore the corresponding energy) become larger. That
is because in case of larger data memory sizes, the
contribution of the data memory to the overall energy
consumption becomes crucial.

Table 2. Energy consumption of matrix multiplication algorithms (mJ).
3x3 mmdot.c mmsax.c mmout.c
Cycles 564 726 750
Executed Assembly Instr. 410 527 561
Opcode Mem. Accesses 410 527 561
Data Mem. Accesses 63 108 108
Processor Energy 0.000723525 mJ 0.000933756 mJ 0.000964283 mJ
Instr_mem. Energy 0.001472 mJ 0.001768 mJ 0.001848 mJ
Data_mem. Energy 0.000859 mJ 0.001473 mJ 0.001474 mJ
Total Energy 0.003054525 mJ 0.004174756 mJ 0.004286283 mJ

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

3x3 10x10 20x20 50x50 75x75

instructions
Energy Consumption (experimental)
Energy Consumption (estimated)

Fig. 3. Comparison of cycles, experimental energy consumption and estimated energy consumption (normalized

values)

5. Conclusions and Future Work

Energy consumption is nowadays a major concern for the
development of portable computing devices and it has
been shown that software affects the energy dissipation to
a large extent. In this paper, we have introduced the
notion of energy complexity of an algorithm as a means to
estimate the effect of data and instruction memory
accesses to the total power consumption of an algorithm.
An example of matrix multiplication algorithms has
demonstrated the improvement that can be gained by
considering energy complexity polynomials for the
corresponding algorithms.
Future research on this field should include
experimentation on larger and more complicated
programs to establish the accuracy of the energy
complexity as an estimate for energy consumption.
Furthermore, the effect on energy of cache memories,
possibly with multiple levels, as well as that of other
architectural features should be studied.

References:

[1] V. Tiwari, S. Malik, A. Wolfe, Power analysis of
embedded software: A first step towards software power
minimization, IEEE Transactions on VLSI Systems, Vol. 2
(1994), pp. 437-445.

[2] A. Chandrakasan, R. Brodersen, Low power digital
CMOS design (Kluwer Academic Publishers, Boston,
1995).
[3] J.L.Henessy, D.A.Patterson, Computer architecture: A
quantitative approach (Morgan Kaufman, San Mateo,
CA, 1990).
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, Introduction to algorithms, 2nd edn. (MIT Press
2001).
[5] P. Landman, Low-power architectural design
methodologies, Doctoral Dissertation (U.C., Berkeley,
1994).
[6] N. Kavvadias, P. Neofotistos, S. Nikolaidis, K.
Kosmatopoulos, T. Laopoulos, Measurements analysis of
the software-related power consumption of
microprocessors, IEEE Transactions on Instrumentation
and Measurement, vol. 53, no 4, pp.1106-1112, August
2004.
[7]http://www.arm.com/armtech/ARM7TDMI?OpenDocu
ment, ARM Products and Solutions.
[8] S. Furber, ARM system-on-chip architecture (Addison-
Wesley, Harlow, UK, 2000).
[9] A. Chatzigeorgiou, D. Andreou, S. Nikolaidis,
Description of the software power estimation framework,
IST-2000-30093/EASY Project, Deliverable 24, February
2003, URL: http://electronics.physics.auth.gr/easy.
[10] G.H.Golub, C.F.van Loan, Matrix computations
(John Hopkins University Press, Baltimore, 1996).

