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Abstract—A method of link analysis employed for retrieving information from the

Web is extended in order to evaluate one aspect of quality in an object-oriented

model. The principal eigenvectors of matrices derived from the adjacency matrix of

a modified class diagram are used to identify and quantify heavily loaded portions

of an object-oriented design that deviate from the principle of distributed

responsibilities.
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1 INTRODUCTION

THE merits of object-oriented (OO) systems concerning ease of
reuse, maintainability, extensibility, and scalability are well
understood and drive the wide acceptance of object-orientation
among software developers. However, object-oriented design is
rather a skill than a set of strict guidelines that can be safely
applied. Obviously, not all object-oriented designs are of good
quality. For example, novices in OO-programming or program-
mers with a large experience on procedural languages (who
naturally find it difficult to adopt the object-oriented way of
thinking [1]) tend to capture most of the domain and application
semantics within a small subset of classes, occasionally within a
single object [2]. In other words, the outcome of the analysis is one
or more “God” objects [3], which perform most of the work in the
system. Clearly, such a solution is not managing complexity any
better than procedural programming.

Software metrics have been developed for evaluating and

quantifying several aspects of the software engineering process [4],

including metric suites for object-oriented systems [5], [6], [7], [8].

Such metrics evaluate the degree of object-orientation or measure

specific characteristics of the design, such as cohesion and

coupling. To the same end, metrics for evaluating the quality of

a model with respect to its accordance to well-defined criteria,

would be useful in object-oriented analysis [9]. Recently, empirical

models for assessing high-level design quality attributes of object-

oriented systems, such as reusability, flexibility, and complexity

have been proposed [10].
The Hyperlink Induced Topic Search (HITS) algorithm [11] has

been proposed for identifying pages on the World Wide Web that

are “authoritative sources” on broad search topics. The rationale

behind this algorithm is that the quality of a page p, referred to as

the authority of the corresponding document, is not related only to

the number of pages pointing to p, called hubs, but also to the

quality of these hubs. Hubs and authorities exhibit what could be

called a mutually reinforcing relationship.
This paper proposes the application of the HITS algorithm in

object-oriented designs in order to evaluate the quality of a model,

depicted in a class diagram or any other kind of diagram. By

modifying the algorithm in order to account for the number of

discrete messages exchanged between classes, it is possible to

identify “God” classes [3], elements which imply a poorly
designed model. The main argument is that a class cannot be
considered to play a central role in a model solely on the basis of
messages that it sends or receives. Whether a class is a central
behavioral or data storage “God” class [3] should be determined
by taking into account the importance of the classes to which it is
associated into the system. Although existing OO metrics are very
good at determining structural characteristics, they are not
sufficient for assessing the role of each class according to the
importance of its associated classes.

The rest of the paper is organized as follows: Section 2 describes
briefly the required features of a quality metric concerning the
identification of heavily loaded classes. In Section 3, the application
of the HITS algorithm on class structures is presented along with a
brief overview of the underlying mathematics and the proposed
measures are introduced. Results from the application of the
proposed methodology to example designs are discussed in
Section 4, while existing OO metrics are discussed in Section 5.
Finally, we conclude in Section 6.

2 QUALITY ASSESSMENT

The analysis of object-oriented systems in this study is based on
the following hypothesis (the terminology is borrowed from the
Web domain):

A class c holds a central role in a model:

1. if it sends many messages to other classes which are also central
or

2. if it receives many messages from other central classes.

In case 1, class c is a candidate of a good hub, indicating that it
sends out many requests for services to other classes that are
significant to the model. In case 2, class c is a candidate of a good
authority, indicating that it receives requests for services from
other classes that are also of primary importance to the model. To
break this circularity in the definition of good authority and hub
classes, the HITS algorithm is employed.

The initial motivation behind the development of the HITS
algorithm was the lack of an objective function that would be both
concretely defined and corresponded to human notions of quality
[11]. The goal in this paper is to define, by algorithmic means, a
novel type of quality measure for the relative importance of each
class in an object-oriented model.

In a balanced object-oriented design, one would expect that the
responsibilities be distributed in a relatively uniform fashion
among all classes of the system. Consequently, a suitable metric for
evaluating whether functionality is spread uniformly would be the
standard deviation of the authority and hub weights of all classes.

In the next section, the link analysis method proposed by
Kleinberg [11] is modified for extracting the authority and hub
weights of an object-oriented design, expressed as a modified class
diagram on which the number of exchanged messages is indicated.

3 LINK ANALYSIS FOR OO DESIGNS

Given a set T of associated classes, the aim is to find the authority
and hub weights ðap; hpÞ associated with each class in the set.
Classes with higher authority and hub weights are viewed as
classes having a more important role in the model.

The set of all classes in the model can be represented as a
directed graph G ¼ ðV ;EÞ, where vertices correspond to the
classes and a directed edge ðp; qÞ 2 E indicates an association
between classes p and q, with a direction from p to q. In the
proposed approach, each edge is annotated with an integer mp;q

corresponding to the number of discrete messages sent to the same
direction from p to q. This slight modification to the HITS
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algorithm is required since only the presence of an association is

not sufficient to indicate the amount of information flow and, thus,

it cannot be used to determine the relative importance of the

associated classes. The algorithm starts by setting all elements of

the a and h vectors equal to one.
If a class p sends many messages to classes with large a-values,

it should receive a large h-value; if p receives messages from many

classes with large h-values, it should receive a large a-value. By

modifying the approach by Kleinberg [11], this mutually reinfor-

cing relationship motivates the definition of the following two

operations:

Operation I : ap ¼
X

q:ðq;pÞ 2 E

mq;phq; ð1Þ

Operation O : hp ¼
X

q:ðp;qÞ 2 E

mp;qaq: ð2Þ

To reach an “equilibrium” for the values of ap and hp, the two

operations can be iteratively applied in an alternating fashion until

a fixed point is reached. To ensure that the algorithm converges, at

each iteration, the values of a and h vectors should be normalized

so that the vector has unit length [12].
From the power method of Linear Algebra [12], [13], it follows

that, for a symmetric matrix A, if x is any vector not orthogonal to

the principal eigenvector of A, Amx as m increases approaches the

principal eigenvector of A (which in turn is the eigenvector

associated with the largest eigenvalue of A).
Now, let A denote the adjacency matrix of the graph G in the

model under study. The ði; jÞth entry in A is equal to the number of

messages on edge ðpi; pjÞ if this edge exists; otherwise, it is equal to

0. It can be verified easily that vectors an and hn are the unit vectors

in the direction of ATA
� �n�1

ATz and AAT
� �n

z, respectively, where

z is the vector ½1; 1; . . . ; 1� by which both a and h have been

initialized.
Since, in the general case, ATz and z are not orthogonal to the

principal eigenvectors of ATA and AAT , respectively, the

sequences fang and fhng converge to the principal eigenvectors

of ATA and AAT , respectively. Since both matrices are symmetric

and have real elements, the corresponding eigenvectors also have

real elements [13].
Thus, to obtain the authority and hub weights of all classes, the

adjacency matrix A of the graph G corresponding to the class diagram has

to be found and then the authority and hub vectors are given by the

normalized principal eigenvector of ATA and AAT , respectively.
It should be noted that the power method has only been

employed to prove that, if operations I and O are applied

iteratively, vectors a and h will converge to the principal

eigenvectors of ATA and AAT , respectively. The actual computa-

tion of the eigenvectors can be performed using more efficient

algorithms, such as Schur decomposition [13].
To determine whether a class plays the role of a “God” object

within the system, both its authority and its hub weight have to be

examined. In case a class acts as a behavioral “God” class [3],

initiating requests for services to the rest of the system, it will

obtain a high hub value, while, in case it acts as a Data Structure

“God” class receiving messages, it will obtain a high authority

value. Thus, a good measure for this purpose would be the average

of these two weights.
Since the quality of a design cannot be determined solely on the

basis of either the authority of the hub weights, we define as

responsibility distribution quality metric of a class-based system

represented by a graph G, the standard deviation of the elements

in a vector containing the average of the authority and hub weights

assigned to each of the classes in the system:

dqG ¼ �
an þ hn

2

� �
: ð3Þ

A low standard deviation indicates more uniformity and therefore

more conformance with the distributed responsibility principle.
So far, the proposed analysis has not considered inheritance,

which is a vital characteristic of many OO designs. In case of a

generalization relationship, the derived classes inherit all attributes

and methods from their base class. Consequently, derived classes

will also inherit associations from their ancestors, which are the

“information pipelines” through which they can exchange mes-

sages. However, since each descendant can either inherit the base

class methods without modification, change their implementation

either through static binding (overriding) or dynamic binding

(polymorphism), or even add new methods, the number of

exchanged messages in the adjacency matrix should be extracted

for each class separately.
Similar to the Coupling between objects (CBO) metric [5],

inheritance related classes should not be considered as being

coupled and, therefore, they should not contribute to the

“authority” of “hub” weights of the associated classes. Only

explicit exchange of messages should be taken into account. The

reason why link analysis cannot take advantage of the inheritance

relationship to reduce the amount of computation is the following:

Although, according to the Liskov Substitution Principle [14], the

subclass must be substitutable for its base class and, consequently,

should be able to receive the same messages; any derived class

might also have additional associations and, thus, send/receive

messages to/from other classes as well, which is apparent in

several Design Patterns [15].

4 EXAMPLES

To illustrate the necessity for computing the authority/hub

weights in order to estimate weaknesses in the design of an

object-oriented system, let us consider the following example,

where a class c acts as a controller. In the diagram of Fig. 1a,

class C3 is actually a central “brain” class controlling behavior and

initiating any activity in the system [3]. The notation of collabora-

tion diagrams in UML is employed to show the number of discrete

messages exchanged between classes.
From the graph corresponding to this diagram (Fig. 1b), the

adjacency matrix that is obtained is:

A ¼

0 1 1 0 0
0 0 1 0 1
1 1 0 1 1
1 0 1 0 0
0 0 1 1 0

2
66664

3
77775:

The principal eigenvectors for the ATA and AAT matrices,

corresponding to the principal eigenvalues, are:
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Fig. 1. (a) OO design with a “God” class and (b) corresponding annotated graph.



an ¼

0:394
0:394
0:615
0:394
0:394

2
66664

3
77775; hn ¼

0:394
0:394
0:615
0:394
0:394

2
66664

3
77775:

The elements of these vectors are the authority and hub weights of

the corresponding nodes/classes according to the application of

the modified HITS algorithm. From the authority and hub weights

of class C3, it becomes obvious that this class has a central role in

the system, encompassing most of the system’s intelligence and,

thus, violating the principle of uniformly distributed responsibil-

ities. Such a class corresponds directly to the role of a controller

function in procedural programming. Due to the symmetry of the

diagram, all other classes have equal weights and also vectors an
and hn are equal.

The reason for choosing authority/hub weights instead of

other measures, such as the number of incoming/outgoing

messages (in or out-degree) for each class (which would also

result in the same ordering in this case), is best explained through

a second example. Suppose that each of the peripheral classes in

the previous example (C1, C2, C4, and C5) had a helper class for

performing secondary functions (Fig. 2). It is clear that C3 remains

the central “brain” class of the system. If the number of incoming

and outgoing messages is used for identifying central classes in

the design, classes C1, C2, C4, and C5 cannot be distinguished

from class C3 (since all have an in and out-degree of 4). On the

other hand, the calculation of the authority/hub weights by means

of the adjacency matrix (where edges corresponding to associa-

tions on which two messages are exchanged have a weight of two)

results in:

aTn ¼ hT
n ¼

½0:383 0:383 0:454 0:383 0:383 0:227 0:227 0:227 0:227�:

Class C3 is clearly identified by the authority/hub weights as the

most heavily loaded class in the design. Helper classes are

associated to the lowest authority/hub weights.
To evaluate the proposed method in a nonideal example, we

consider an object-oriented system for modeling the operation of a

microwave oven, developed both in a “novice design” manner in

which a central “Manager”-like object captures most of the

functionality and in a more sophisticated way in which the

“God” object has been eliminated [2]. A diagram showing the

classes of the initial design and the messages exchanged is shown

in Fig. 3. For this system, the authority and hub weights are given

by the vectors:

aTn ¼ ½0 0:229 0 0:688 0:459 0:459 0:229�
hT
n ¼ ½0 0 1 0 0 0 0�:

It should be mentioned that the central class has an authority
weight of zero since classes sending messages to it do not receive
messages by any other class than the central. This has been called

the nil-weighting limitation of the HITS algorithm [16]. However, it
has a hub weight of one, indicating clearly that this class initiates

any activity in the system.
In the improved design shown in Fig. 4, the oven class has been

eliminated in recognition that there is no need to have major
control objects between the generator and the processor of an

event. For this system, which emphasizes the principles of
encapsulation and delegation, the corresponding vectors are:

aTn ¼ ½0:428 0:433 0:219 0:759 0 0:053�
hT
n ¼ ½0 0 0:776 0 0:195 0:6�:

In this design, authority and hub weights are much more

uniformly distributed. The distribution quality metric for the
initial and the improved oven system has a value of 0.165 and
0.141, respectively.

5 RELATED WORK

The literature review on software metrics reveals a plethora of
measures for a multitude of aspects of OO designs. To validate the

use of the proposed metric, well-established internal product
metrics from the suites proposed by Chidamber and Kemerer [5],
Lorenz and Kidd [6], Brito e Abreu [7], and Li and Henry [8] have

been selected for comparison.
The proposed link-analysis metric focuses mainly on a specific

design heuristic, which states that the designer should avoid
creating “God” classes/objects in the system [3], [9]. It aims first to

identify such classes in the system and, second, to evaluate the
degree of responsibility distribution among the classes of a design.
Consequently, only metrics that can be directly or indirectly

employed for this purpose have been considered. The comparison
should therefore be made against the following criteria:

1. The ability to account for the significance of the related
classes (whether, for example, the metric can differentiate
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between class C3 and peripheral classes C1, C2, C4, and C5
in Fig. 2).

2. The ability to consider both incoming and outgoing flows of
messages (for example, if one class C1 sends out n
messages, while another class C2 receives and sends n

messages, the metric should differentiate between the roles
of the two classes).

One could argue that classes with a high static complexity,
which is captured by the Weighted Methods per Class (WMC) metric
[5], are possibly “God” classes. However, a large WMC value,
which could also be the result of a single overcomplicated function,
does not imply that the class has a central role in the system in the
sense that many other central classes are using it or providing
services to it. Moreover, this metric is not applicable at any phase
prior to detailed design.

In a similar manner, since the Lack of Cohesion in Methods
(LCOM) metric [5] captures the degree of cohesiveness of methods
within a class, it could be used for determining “God” classes,
when disjoint functionalities have been placed into one class,
which should then probably be split into two or more classes. This
metric, however, does not guarantee the number and significance
of collaborators (i.e., a class with a high LCOM value could
possibly be used by a single other class). For both the WMC and
LCOM metrics, criteria 1 and 2 are not fulfilled. On the other hand,
these metrics could be used complementary to the proposed one in
order to differentiate between classes which appear to be equally
important to the system according to link analysis (for example,
peripheral classes C1, C2, C4, and C5 in Fig. 2).

From the metrics suite proposed by Lorenz and Kidd [6], the
Number of message sends (NOM) summed over all class methods
and the Number of Instance Methods in a Class (NIM) (assuming that
the latter is related to the number of received messages) can also be
considered an alternative. According to Lorenz and Kidd, a high
NIM value indicates a large class that may be trying to do too
much of the work itself instead of putting the responsibilities
where they belong. However, these metrics end up in the
calculation of in/out degree, which, as already explained, is not
sufficient to distinguish between central and peripheral classes as
in the example of Fig. 2, although it fulfills criterion 2. Metrics
which have a similar motivation to the proposed one are the
Number of Key Classes (NKC) and the Number of Support Classes
(NSC) [6], where key classes are those focused on the application
domain and appear to have a central role, while support classes
tend to be more application-specific. However, the identification of
key classes lacks formality and, since it takes place during analysis,
one key class might loose this attribute in subsequent phases.

The degree of coupling measured by either the Coupling
between objects (CBO) [5] at a class level or the Coupling Factor

(CF) from the MOOD set of metrics [7] at a system level,
providing insight to the “fan-out” of each class, could signify that
the class with the highest coupling factor is a “God” class. To the
same end, the Message-Passing Coupling (MPC) [8], defined as the
sum of the number of method calls made by all methods in a
class, could also be used. With all these metrics it is possible to
quantify a class’s complexity. Classes with high CBO and MPC
metrics may be doing too much work and should be split into
smaller, more narrowly focused classes. However, these metrics
do neither take into account the significance of the related classes
nor the number of classes referencing the class and, thus, they
fail to account for “authority/hub” weights in the system.

6 CONCLUSIONS

A method for assessing the design quality of an object-oriented
model in terms of responsibility distribution among the classes of
the system has been proposed. The role of each class in a class
diagram depends not only on the number of incoming and
outgoing messages, but also on the importance of the classes to
which it is associated. A link analysis method currently employed
for information retrieval from the Web has been extended for
obtaining authority and hub weights for each class, capturing the
combined effect of communicating with other classes for servicing
or issuing requests. These weights are obtained employing the
adjacency matrix of the directed graph that corresponds to the
class diagram, annotated with the number of messages being
exchanged. Finally, the standard deviation of these weights is
proposed as a measure of the uniform distribution of responsi-
bilities in a model.
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Fig. 4. Improved oven system design.


