
Estimating the Breaking Point for Technical Debt

Alexander Chatzigeorgiou1, Apostolos Ampatzoglou2, Areti Ampatzoglou2, Theodoros Amanatidis1
1 Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

achat@uom.gr, tamanatidis@uom.edu.gr

2 Department of Mathematics and Computer Science
University of Groningen

The Netherlands
a.ampatzoglou@rug.nl, areti.ampatzoglou@rug.nl

Abstract—In classic economics, when borrowing an amount of

money that causes a debt to the issuer, it is not usual to have in-

terest which can become larger than the principal. In the context

of technical debt however, accumulated debt in the form of inter-

est can in some cases quickly sum up to an amount that at some

point, becomes larger than the effort required to repay the initial

amount of technical debt. In this paper we propose an approach

for estimating this breaking point. Anticipating how late the

breaking point is expected to come can support decision making

with respect to investments on improving quality. The approach

is based on a search-based optimization tool that is capable of

identifying the distance of an actual object-oriented design to the

corresponding optimum one.

Index Terms—technical debt, search-based software

engineering.

I. INTRODUCTION

In classic quality management Harrington popularized the
concept of “cost of poor quality” or “poor quality costs” [1],
referring to costs generated as a result of producing defective
material. Poor Quality Costs include not only the costs in-
volved in filling the gap between the actual and optimum prod-
uct quality, but also the effort required to rectify any defects in
delivered products. In recent years, the software engineering
community has embraced a similar concept, namely technical
debt, to communicate the aforementioned costs in software
development. Technical Debt (TD) is a collective term for a
number of imperfections and deficiencies in software, which
can lead to increased maintenance effort [2]. The term itself
was coined by Cunningham [3] who drew an analogy between
technical and economic debt, in the sense that speeding up de-
velopment by providing not-quite-right code, counts as a debt
that will have to be paid back in the form of harder future
maintenance.

Research on TD and its management has become intense in
the last five years, reflecting the interest of the community to
address issues related to quality management from the perspec-
tive of their associated costs and benefits [4]. An overview of
the research on Technical Debt Management (TDM) can be
found in two recent literature reviews [5], [6]. Despite the re-
search volume on the subject during the last years, TDM state
of research and practice still exhibits major challenges, such as:
(a) the quantification of the underlying TD amount (i.e., in the
valuation of interest and principal [6]), and (b) the strategies
that can be used for managing the increasing amount of TD
(because of the accumulation of interest) [7]. The focus of this
study will be on both these challenges. Although the quantifica-
tion and management of debt/interest has been extensively

studied by the TD community, in most of the cases the pro-
posed solutions are at a theoretical level (see [5], [6], and [7]).

In particular, we focus on a theoretical framework named
FItTeD (Framework for managing Interest in Technical Debt),
proposed by Ampatzoglou et al. [7]. As captured by FItTeD,
the accumulated interest can potentially sum up to an amount
that becomes larger than the effort that was required for repay-
ing TD at earlier stages of development (principal). Under this
perspective, project managers should be able to calculate the
time point at which the accumulated TD interest will reach the
amount of the corresponding principal. This time point is called
‘breaking point’ in the sense that at this time, any savings re-

sulting from the decision to not repay TD will vanish due to
increased maintenance effort during evolution [7]. Another
interesting instance in the growth trajectory of software (inflec-
tion point) has been defined as the time at which maintenance
effort exceeds effort of implementing new functionality [8].

In this paper we extend previous work [7] by instantiating
FItTeD based on a search-based software engineering method-
ology and implementing a supporting tool. The breaking point
is obtained as the ratio of principal over the average interest per
version. In particular, for any actual system it is possible to
extract a set of refactoring suggestions that can be applied, so
as to increase quality. The application of these refactorings will
yield an optimum design as captured by some fitness function.
The distance between the actual and the optimum system
serves as an indicator of the TD principal. The ratio of quality
of the optimum over the actual system is used to estimate the
ratio of increased effort over the original effort (interest) to
maintain the two systems. The approach is presented in Section
III and illustrated on an OSS system in Section IV.

II. GOAL

The goal of the proposed approach is to assist software pro-
ject managers in their decision making, by providing an esti-
mate of the time point at which accumulated interest from TD
will exceed the initial savings obtained by not repaying the
principal. The value of this information will be illustrated with
the help of Figure 1. Let Principal(t) be the amount of effort
saved by not repaying the existing TD at time point t, or in oth-
er words, the cost that has not been spent on refactoring an
existing software system to reach the optimum design-time
quality level [6]. Since the decision on whether repayment of
TD should be performed has to be taken at (any) particular time
point, we represent this amount as a straight horizontal value.
Although principal will probably increase over time since soft-

978-1-4673-7378-4/15 c© 2015 IEEE MTD 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

53

ware quality usually decays, at the time point t it can only be
viewed as a constant value. Assuming that TD has not been
repaid at time point t, future maintenance tasks will demand
additional effort (compared to the effort that would be spent,
had the TD been repaid). This additional effort is known as the
interest, and for evolving systems it will accumulate as depict-
ed in Figure 1.

* In this illustration we assume that no further repayment is performed during evolution

Fig. 1. Breaking point at which cumulative interest exceeds principal

The approach allows software project managers to estimate
in how much time the decision to not repay TD (at point t), will
incur a cumulative interest that becomes larger than the princi-
pal. In case this time point is too distant in the future (n ver-
sions after today’s time point t), then probably, it makes little
sense to resolve TD at time point t. In case this breaking point
is expected to come in the near future and especially when it
lies within the foreseeable product evolution, the manager
should consider the benefit of addressing TD liabilities.

III. APPROACH

A. Estimation of Principal

In general, as Curtis et al. [9] pointed out, TD-Principal is
calculated as a function of three variables - the number of
must-fix problems, the time required to fix each problem, and
the cost for fixing a problem. Concerning the first variable, we
assume that any given object-oriented software system, has an
actual design quality which can be assessed by an appropriate
fitness function. In our case, the selected fitness function is a
measure of both coupling and cohesion. This function assesses
how well the entities in a system (methods and attributes) have
been allocated to the classes [10]. Local search optimization
algorithms can then be applied to derive the optimum design,
i.e. the design consisting of the same constituent entities that
optimizes the selected fitness function. Thus, the ‘distance’

between the actual and the optimal design, in terms of their
difference in the fitness function value, can be considered as
the principal that has to be paid to transform the actual system
to the corresponding optimum one. Obviously, relying on par-
ticular metrics to assess TD poses a construct validity threat.
However, one can employ any kind of fitness function, even
aggregate ones, to capture the desired aspects of quality. To
ensure the applicability of this concept, we have developed a
tool that is able to assess the number and type of required refac-

torings to achieve the conversion to the optimal design (see
Section III.C). This notion of distance is illustrated in Figure 2.

* In this illustration we assume that while adding features quality does not further decay

Fig. 2. Increased maintenance effort for technical debt item

The relevant effort to fill the gap between the actual and the
optimum design is effort devoted to the repayment of TD and
therefore it is denoted as Effortr. This repayment activity con-
sists in the application of refactorings aiming at the improve-
ment of quality from the perspective of the employed fitness
function. Taking into account past data concerning the number
of refactorings that can be performed at the unit of time and the
developer cost per hour it becomes possible to obtain an esti-
mate of the principal in terms of money (see Section IV).

B. Estimation of Interest

The effort related to the enhancement of functionality or the
correction of bugs is devoted to system maintenance and is
denoted as Effortm. Under usual conditions, the effort required
to maintain the actual system (e.g. to add a new feature A) will
be larger than the corresponding effort to add the same feature
in the optimum system (Figure 2). The difference between the
two efforts corresponds to the interest that is accumulated dur-
ing this transition from version t (prior to the addition of fea-
ture A) to version t+1. Due to the nature of software evolution
it is not possible to anticipate what kind of changes will be per-
formed in future versions of a software product. To address this
limitation and to keep the model simple, we consider past
changes in the history of the system. Any kind of measure for
the quantification of past effort can be used. Here, we extract
the average number of added lines of code between successive
versions. Added lines reflect the effort for the introduction of
new functionality and to some extent the effort for the modifi-
cation of existing modules. Let us assume that on average k
lines of code are added between any two successive versions.

It is reasonable to assume that performing k additions on a
system with a superior design quality (expressed by the value
of the employed fitness function) will be easier than perform-
ing the same changes on a system with lower quality. For the
sake of generality we assume that this maintenance effort will

be proportional to the design quality:

ueFitnessValcEffortm ×= (1)

where c is an arbitrary constant.

Time (Versions)

E
ff

o
rt

 ®

C

o
st

t t + 1 t + 2 t + n

Principal(t)

Cumulative

Interest

Breaking

point

Maintenance Effort

R
e

p
a

y
m

e
n

t
E

ff
o

rt

Actual

Optimum Optimum’

Actual’

Effortm(optimum)

Feature A

Effortm(actual)

Feature A

Effortr

interest

principal

54

According to the proposed approach we know the fitness
value for the actual and the optimum systems, and thus we can
take the ratio of the theoretical effort (if maintenance been per-
formed on the optimum system) over the actual effort:

()
()

()
()

() ()
() ()actualEffort
actualueFitnessVal

optimumueFitnessVal
optimumEffort

actualueFitnessValc

optimumueFitnessValc

actualEffort

optimumEffort

mm

m

m

×=

Þ
×
×

=
 (2)

Therefore, if the actual maintenance effort is obtained as the
average of past maintenance effort (as the number of added
lines k), then the optimum effort can be directly deduced. As a
result, the interest that is accumulated between any two succes-
sive versions can be obtained as the difference between the
actual and the optimum effort and is equal to:

()
() ÷

÷
ø

ö
çç
è

æ
-×=D=

actualueFitnessVal

optimumueFitnessVal
kEffortInterest 1 (3)

Once again, taking into account past data concerning the
number of added lines of code that can be achieved at the unit
of time and the developer cost per hour, it becomes possible to
obtain an estimate of the interest, in terms of money. Having
the principal and the interest that is accumulated in one version,
it is straightforward to obtain the number of versions after

which the breaking point will be reached as:

()
()$

$

Interest

incipalPr
versions= (4)

It should be noted, that beyond the assumed linear nature of
interest increase in this simplified model, other economic pa-
rameters, such as inflation are not considered, but can be easily
integrated into the proposed analysis. Moreover, a deterministic
prediction of future effort is an ambitious task, because numer-
ous factors, e.g., business requirements and technology changes
come into play. It would be interesting to consider a stochastic
approach where such factors are handled as probabilities.

C. Tool Support

In the proposed approach it is assumed that software quality
can be assessed by means of a fitness function capturing cou-
pling and cohesion. Obviously, quality has many facets and
thus it is questionable whether it can be quantified in terms of a
single function that expresses all aspects of quality [2]. Never-
theless, the quality assurance team can examine TD from vari-
ous perspectives by employing appropriate measures or even
extract a polynomial of various quality attributes (as in the case
of models such as QMOOD [11]). In our study, quality is cap-
tured by the Entity Placement metric that simultaneously quan-
tifies coupling and cohesion in the same terms [10]. The metric
is based on the ‘distance’ that each system entity has from its
own class and from other system classes. In a well-designed
system, entities should have a low distance from the class in
which they reside and a large distance from all other classes.

An object-oriented system can be considered as a set of en-
tities (methods and attributes) which can be freely moved be-
tween classes. By treating the challenge of finding the place-

ment of entities that minimizes the Entity Placement metric as a
search-space exploration problem [12], we have developed a
software tool, JCaliper, which is capable of extracting the op-
timum allocation of entities to classes. JCaliper employs
search-based techniques such as Hill Climbing, Tabu Search
and Simulated Annealing [13] to find the optimum design. To
transform an existing system to its corresponding one, a num-
ber of refactoring operations should be applied such as Move
Method, Move Attribute, Extract Class, Pull-Up Method etc.
[14]. JCaliper automatically extracts the number, type and se-
quence of refactorings required to obtain the optimum design.
Therefore, the ‘distance’ between the actual and the optimum

design in terms of their Entity Placement value can be substan-
tiated as a series of actual refactorings to be performed. This
number of refactorings is a concrete computation of the amount
of TD, from the perspective of the selected quality measure.

IV. CASE STUDY

JUnit1 is an open-source framework to write repeatable test
cases, written in Java. To illustrate the proposed approach we
have employed version 4.10 consisting of 147 classes and 786
entities. The Entity Placement for the actual and the optimum
system as derived by JCaliper is shown in Table I. The distance
in the Entity Placement, the percentage improvement that can
be achieved by paying off the relevant TD and the number of
required refactorings to obtain the optimum system are also
shown. To provide an estimate of the required effort and cost
for repaying the principal, we consider that a refactoring takes
on average five to ten minutes to perform [15]. According to
the US Bureau of labor statistics report for 2014, the mean
hourly wage for software developers/programmers is $45.81
[16], leading to a rough estimate of 5.73$ per refactoring.

TABLE I. ESTIMATE OF PRINCIPAL (JUNIT)

Entity Placement Effort

actual optimum distance Improvement #Refactorings time Cost

0.819a 0.692 0.127 15.5% 330 41.25h 1,891$

a. In contrast to what is shown in Fig. 2, for Entity Placement, a lower value corresponds to a better design

To obtain an estimate of the interest that is accumulated be-
tween versions, we performed a software evolution analysis of
16 versions of JUnit with the help of the SEAgle platform [17].
SEAgle provides an overview of the evolution of repository
activity and source code metrics, which indicate that the aver-
age number of added lines of code between any two successive
versions is 848 (we note that the total number of added lines of
code is far from evenly distributed among versions).

It is rather risky to associate a number of LOC with a par-
ticular effort, especially for an open-source project. Neverthe-
less, for the sake of completeness and since this example serves
only illustration purposes we assume a productivity for Java,
approximately equal to 25 LOC/hour (including designing,
writing and testing the corresponding code) [18], a figure
which is also the upper bound in the productivity found in a
case study on extreme programming in practical settings [19].

1 http://junit.org/

55

Based on this productivity estimate, the required effort to
perform maintenance between any two successive versions and
the associated cost is summarized in Table II. The cost in dol-
lars is estimated using the same hourly wage as in the case of
refactoring effort (although it would be reasonable to assume
that maintainers have a different salary). Under the assump-
tions stated earlier, the lower effort for maintaining the opti-
mum JUnit ‘edition’ is obtained by considering the ratio of the
optimum system quality over that of the actual system (eq. (2)).

TABLE II. ESTIMATE OF INTEREST PER VERSION (JUNIT)

 Actual Effort Optimum Effort

average added LOC time Cost time Cost

848 33.9h 1,553$ 28.6h 1,310$

The difference between the effort required to maintain the
actual and optimum version corresponds to the debt’s interest

and is equal to (interest can also be directly obtained from (3)):

$243)()(=-= optimumEffortactualEffortInterest

By setting the principal and the interest accumulated during
each transition into eq. (4) we obtain the number of versions
that will elapse until the evolution reaches the breaking point,
or in other words the time point at which the accumulated in-

terest will reach the original principal:

Elapsed time to breaking point = 7.78 versions

To consider whether this breaking point is too distant in
time or not, we have analyzed the 9 latest versions of JUnit and
found that a new version is released every 8.4 months on aver-
age. In other words, for this project, the breaking point will
occur approximately 5.4 years from the time of analysis. To
provide another view, we can estimate the annual interest that
has to be paid, which is equal to 347$. Considering the princi-
pal as the amount that has been ‘borrowed’ (by not repaying

technical debt), this figure translates to an annual interest rate
of 18.35%. If the aforementioned estimates are accurate, it is
more than evident that this form of loan is extremely expen-
sive. The analysis can also be carried out for partial repayment
of the principal, a scenario which might be more realistic, given
that not all parts of a software design are subject to frequent
maintenance. In that case, project managers can select a portion
of the initially suggested refactorings to estimate the principal,
and also adapt the ratio of quality between the optimum and the
actual system to obtain a more appropriate breaking point.

V. LIMITATIONS

Since the approach depends upon a number of assumptions,
we summarize here the most important issues to be considered:

· TD has other dimensions beyond coupling and cohesion

· Maintenance effort should account for other activities be-
yond addition of LoC (e.g. modifications, deletions)

· Future maintenance effort cannot be predicted solely on the
basis of past maintenance tasks

Moreover, it should be noted that cost estimates for refac-
toring application and introduction of new code, do not reflect
commonly agreed figures, and thus are also subject to change.

VI. CONCLUSIONS

In this paper we have introduced an approach for estimating
the time (breaking point) at which the accumulated interest of
technical debt in object-oriented systems will exceed the corre-
sponding principal. The approach is based on the extraction of
the optimum design for a particular system, relying on the op-
timization of an appropriate fitness function that serves as an
indicator of quality. In the context of Technical Debt Manage-
ment, the knowledge of this breaking point can provide support
to the decision making process of software project managers.
Estimating when any savings, obtained by not investing on
technical debt repayment, will be vanished, can guide decisions
to select one particular form of investment over the other.

REFERENCES

[1] H. J. Harrington, Poor-Quality Cost: Implementing, Understanding, and

Using the Cost of Poor Quality: 11. CRC Press, 1987.
[2] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From

Metaphor to Theory and Practice,” IEEE Softw., vol. 29, no. 6, pp. 18–

21, Nov. 2012.
[3] W. Cunningham, “The WyCash Portfolio Management System,” in

Addendum to the Proceedings on Object-oriented Programming

Systems, Languages, and Applications, NY, USA, 1992, pp. 29–30.
[4] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software

Practitioners Have to Say about Technical Debt,” IEEE Softw., vol. 29,
no. 6, pp. 22–27, Nov. 2012.

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on

technical debt and its management,” J. Syst. Softw., vol. 101, pp. 193–
220, Mar. 2015.

[6] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic
literature review,” Inf. Softw. Technol., vol. 64, pp. 52–73, Aug. 2015.

[7] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou,
“Establishing a framework for managing interest in technical debt,” 5th
International Symposium on Business Modeling and Software Design
(BMSD), Milan, Italy, 2015.

[8] N. Ramasubbu and C. F. Kemerer, “Managing Technical Debt in
Enterprise Software Packages” IEEE Trans. Softw. Eng., vol. 40, no. 8,
pp. 758-772, August 2014.

[9] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and
types of Technical Debt,” 3rd International Workshop on Managing

Technical Debt (MTD ‘12), Zurich, Switzerland, 2012, pp. 49 - 53
[10] N. Tsantalis and A. Chatzigeorgiou, “Identification of Move Method

Refactoring Opportunities,” IEEE Trans. Softw. Eng., vol. 35, no. 3, pp.
347–367, May 2009.

[11] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp.
4–17, Jan. 2002.

[12] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based Software
Engineering: Trends, Techniques and Applications,” ACM Comput Surv,
vol. 45, no. 1, pp. 1–61, Dec. 2012.

[13] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Harlow: Pearson Education Limited, 2013.

[14] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code, 1 edition. Reading, MA:
Addison-Wesley Professional, 1999.

[15] W. C. Wake, Refactoring Workbook, 1 edition. Boston: Addison-Wesley
Professional, 2003.

[16] U.S. Bureau of Labor Statistics, “National Occupational Employment

and Wage Estimates,” United States, Mar. 2015.
[17] T. Chaikalis, E. Ligu, G. Melas, and A. Chatzigeorgiou, “SEAgle:

Effortless Software Evolution Analysis,” 30th IEEE Int. Conference on

Software Maintenance and Evolution (ICSME), 2014, pp. 581–584.
[18] L. Prechelt, “An Empirical Comparison of Seven Programming

Languages,” Computer, vol. 33, no. 10, pp. 23–29, Oct. 2000.
[19] P. Abrahamsson and J. Koskela, “Extreme programming: a survey of

empirical data from a controlled case study,” Int. Symposium on
Empirical Software Engineering (ISESE), 2004, pp. 73–82.

56

