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Abstract

The development of high-performance and lower power portable devices relies on both the underlying hardware architecture and

technology as well as on the application software that executes on embedded processor cores. One way to confront the increasing complexity

and decreasing time-to-market of embedded software is by means of modular and reusable code, forcing software designers to use objected

oriented programming languages such as Cþþ [6]. However, the object-oriented approach is known to introduce a significant performance

penalty compared to classical procedural programming. In this paper, the object oriented programming style is evaluated in terms of both

performance and power for embedded applications. Profiling results indicate that Cþþ programs apart from being slower than their

corresponding C versions, consume significantly more energy. Further analysis shows that this is mainly due to the increased instruction

count, larger code size and increased number of accesses to the data memory for the object-oriented versions.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Embedded systems; Object-oriented programming; Low power design

1. Introduction

The increasing demand for high-performance portable

systems based on embedded processors has raised the

interest of many research efforts with focus on low power

design. Low power consumption is of primary importance

for portable devices since it determines their battery lifetime

and weight as well as the maximum possible integration

scale because of the related cooling and reliability issues

[5]. The challenge to meet these design constraints is further

complicated by the tradeoff between performance and

power: Increased performance, for example in terms of

higher clock frequency, usually comes at the cost of

increased power dissipation.

To reduce the system power consumption, techniques at

both the hardware and the software domain have been

developed. The overall target of the most recent research is

to reduce the dynamic power dissipation, which is due to

charging/discharging of the circuit capacitances [3,5].

Hardware techniques attempt to minimize power by

optimizing design parameters such as the supply voltage,

the number of logic gates, the size of transistors and the

operating frequency. Such hardware optimizations usually

affect performance negatively. The software techniques that

have been developed for reducing power dissipation

primarily target at performing a given task using fewer

instructions resulting in a reduction of the circuit switching

activity. In this case, an improvement is achieved for both

performance and power. Moreover, software methodologies

normally address higher levels of the system design

hierarchy, where the impact of design decisions at system

level may be higher and the resulting energy savings may

also be significantly larger.

The increasing complexity and decreasing time-to-

market of embedded software, forces the adoption of

modular and reusable code, using for example object

oriented techniques and languages such as Cþþ [6,16].

The shift of the system functionality to the software domain

enables greater flexibility in maintaining and updating an

existing application. Object Oriented Programming (OOP),

through features such as data abstraction and encapsulation

of data and functions, is widely accepted as a methodology

to improve modularity and reusability [12,24]. Equally

important, is the integration of hardware description
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languages and OOP programming languages into a common

modeling platform. A promising example of this case is the

enhancement of Cþþ with classes to describe hardware

structures in SystemC [25].

In spite of its advantages, the acceptance of OOP in the

embedded world has been very slow, since embedded

software designers are reluctant to employ these techniques

due to the additional performance overhead, in an environ-

ment with relatively limited computational power and

memory resources. The introduced penalty on the system

performance, in terms of execution time and memory

overhead, has been demonstrated in Refs. [4,8,11,18]. This

inherent drawback of object-oriented languages has forced

the software community to develop sophisticated compilers

which attempt to optimize the performance of OOP [1,7,13,

20,29]. An open standard defining a subset of Cþþ suitable

for embedded applications has also been initiated [9].

The purpose of this work is to investigate the effect of

object oriented techniques compared to traditional pro-

cedural programming style, in an embedded environment,

on both performance and power. The proposed power

exploration methodology is not restricted to the processor

but also considers the energy consumption of the instruction

and data memories, whose power dissipation is a significant

component of the total power in an embedded system.

Since, to the author’s best knowledge, this is the first study

of the power implications of object oriented programming,

the aim here is not to evaluate existing compiler techniques

in improving the performance of OOP but rather to show

that OOP, if applied without considering energy issues, can

affect significantly not only the system performance but also

its power consumption.

The target architecture that has been used for comparing

object oriented programming style versus procedural pro-

gramming is the ARM7 TDMI embedded processor core

which is widely used in embedded applications due to its

promising MIPS/mW performance [10]. Moreover, it offers

the advantage of an open architecture to the designer. In order

to evaluate both programming styles in terms of power-

performance, the OOPACK benchmark kernels [14] and

some well-known algorithms [17] will be used as test vehicle.

The paper is organized as follows: Section 2 provides an

overview of the sources of power consumption in an

embedded system. Section 3 describes briefly the OOPACK

benchmarks, while in Section 4 the process that has been

followed for the comparisons will be presented and the

experimental results will be discussed. Finally, we conclude

in Section 5.

2. Sources of power consumption

There are mainly three sources of power consumption in

an embedded system, with varying importance according to

the architecture and target application. These are the

processor, memory and interconnect of the system.

The nature of these sources has been extensively studied

during the last years [5] and modeling techniques to

quantify their contribution have been developed. A brief

discussion on each of the sources follows:

1. Processor power consumption, is due to the operation

of the processor circuitry during the execution of program

instructions. This operation translates to switching activity

at the nodes of the digital circuit, which in turn corresponds

to charging/discharging the node capacitances, resulting in

dynamic power dissipation [5]. To quantify this power

component appropriate instruction-level power models have

been developed. These models are based on the hypothesis

that, it is possible [26] by measuring the current drawn by a

processor as it repeatedly executes certain instructions, to

obtain most of the information required to evaluate the

power cost of a program for that processor. This claim has

been refined to state that the total energy cost cannot be

calculated by the summation of the energy costs of the

individual instructions [22,26,27]. It has been proved that

the change in circuit state between consecutive instructions

also has to be taken into account in order to establish

accurate instruction level power models.

The two basic components of an instruction power model

therefore are:

a. Base energy costs: These are the costs that are

associated with the basic processing required to execute an

instruction. This cost is evaluated by measuring the average

current drawn in a loop with several instances of this

instruction. Some indicative base costs for several instruc-

tion types and addressing modes for the ARM7 processor

core are shown in Table 1. The overall range of the current

that is being drawn from the power supply by any one

instruction is between 5.55 and 11.61 mA

b. Overhead costs: These costs are due to the switching

activity in the processor circuitry and the implied energy

consumption overhead resulting from the execution of

adjacent instructions. To measure the average current drawn

in this case, sequences of alternating instructions are

constructed. Some indicative overhead costs between pairs

of instructions are shown in the matrix of Table 2, for the

addressing modes of Table 1. Overhead costs between

instructions of the same kind are significantly smaller.

Therefore, the total energy consumed by a program

executing on a processor can be obtained as the sum of

Table 1

Base costs for the ARM7 processor

Type Instruction Addressing mode Base cost (mA)

Arithmetic ADD LSL immediate 9.92

SUB Immediate 6.67

CMP Immediate 6.65

MOV Immediate 8.07

Load/Store LDR Offset immediate 10.76

STR Offset immediate 8.55

Branch B 8.73
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the total base costs and the total overhead costs. The energy

that is dissipated in a time interval T is given by Ref. [5]:

E ¼
ðT

0
PðtÞdt ¼ V

ðT

0
IðtÞdt ð1Þ

where PðtÞ and IðtÞ is the instantaneous power and current,

respectively, while V is the supply voltage.

However, since the physical measurements that have

been performed refer to the average current measured for

each clock cycle [22], the integral diminishes to a product of

the current ðIiÞ and the clock period ðtÞ times the required

number of clock cycles ðNiÞ for instruction #i: Thus, energy

dissipation is calculated as:

Ep ¼ Ebase þ Eovhd

¼
Xn

i¼1

Ibasei
£ V £ Ni £ t þ

Xn

i¼2

Iovhdi;i21
£ V £ t ð2Þ

where the sum accounts for all instructions in a program.

Ibasei
is the average current drawn by instruction #i and

Iovhdi;i21
the overhead cost for the sequence of instructions i

and i 2 1 (which is not related to the number of cycles of

any instruction).

2. Memory power consumption, is associated with the

energy cost for accessing instructions or data in the

corresponding memories. Energy cost per access depends

on the memory size and consequently power consump-

tion for large off-chip memories is significantly larger

than the power consumption of smaller on-chip memory

layers. This component of the total power consumption is

related also to the application: The instruction memory

energy consumption depends on the code size, which

determines the size of the memory and on the number of

executed instructions that correspond to instruction

fetches from the memory. The energy consumption of

the data memory depends on the amount of data that is

being processed by the application and on whether the

application is data-intensive, that is whether data are

often being accessed. For a typical power model the

power consumed due to accesses to a memory layer i, is

directly proportional to the number of accesses, fi; and

depends on the size, Si; the number of ports of the

memory, the power supply and the technology. For a

given technology, power supply and number of ports,

the consumed energy can be expressed as:

Ei ¼ fi·FðSiÞ ð3Þ

The relation between memory power and memory size is

between linear and logarithmic [28]. According to Ref.

[15], the capacitance that is being switched in a memory

module, which in turn determines the dissipated energy

per access, is a polynomial of the number of bits and the

number of words in the memory array.

3. Interconnect power consumption, is due to the

switching of the large parasitic capacitances of the

interconnect lines connecting the processor to the instruc-

tion and data memories. This source of power consumption

will not be explored in this study. However, since it depends

on the number of data being transferred on the interconnect,

it can be considered that a larger number of accesses to the

instruction and data memory will result in higher inter-

connect energy dissipation. According to a recent study [21]

the interconnect energy consumption is around 7% of the

total system energy.

3. OOPACK benchmarks

OOPACK is a small suite of kernels [14] that compares the

relative performance of object oriented programming in

Cþþ versus plain C-style code compiled in Cþþ . All of the

tests are written so that a compiler can, in principle, transform

the OOP code into the C-style code. Although the style of

object-oriented programming tested is fairly narrow, employ-

ing small objects to represent abstract data types, the range of

applications to which they are used justifies the performance

and power exploration. The four kernels for OOPACK are:

† Max: measures how well a compiler inlines a simple

conditional.

† Matrix: measures how well a compiler propagates

constants and hoists simple invariants

† Iterator: measures how well a compiler inlines short-lived

small objects

† Complex: measures how well a compiler eliminates

temporaries

The above benchmarks have some desirable character-

istics as outlined in Ref. [20]: they allow measurements of

individual optimizations implemented in the compiler,

performance is tested for commonly used language features

and are representative of widely used applications (for

example matrix multiplication is common in embedded

DSP applications).

The Max benchmark uses a function in both C and OOP

style to compute the maximum over a vector. The C-style

version performs the comparison operation between two

elements explicitly, while the OOP version performs the

comparison by calling an inline function. This benchmark

aims to investigate whether inline functions within con-

ditional statements are compiled efficiently.

The Matrix benchmark multiplies two matrices contain-

ing real numbers to evaluate the efficiency of performing

Table 2

Overhead costs (mA) for pairs of different instructions

ADD CMP STR

SUB 1.24 0.13 2.42

MOV 1.35 1.10 2.64

LDR 3.29 2.77 0.80

B 1.25 1.03 2.00
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two classical optimizations on the indexing calculations:

invariant hoisting and strength-reduction. C-style code

performs the multiplication in the following manner:

for(i ¼ 0; i , L; iþþ)
for(j ¼ 0; j , L; jþþ){
sum ¼ 0;
for(k ¼ 0; k , L; kþþ)
sum þ ¼ C[L*i þ k]*D[L*k þ j];

E[L*i þ j] ¼ sum;
}

where for example, the term L*i is constant for each

iteration of k and should be computed as an invariant

outside the k loop. Modern C compilers are good enough

at this sort of optimization for scalars and programmers

do not have to bother doing the optimization by hand.

However, in OOP style, invariants and strength

reduction often concern members of objects. Optimizers

that do not peer into objects miss the opportunities. In

the above example, the OOP version performs the

multiplication employing member functions and over-

loading to access an element, given the row and the

column.

The Iterator benchmark computes a dot-product using a

common single index in the C-style version and using

iterators for the OOP-version. Iterators are a common

abstraction in object-oriented programming, enabling the

management of a collection class without the client program

caring about the underlying structure of the collection.

Although iterators are usually called ‘lightweight’ objects,

they may incur a high cost if compiled inefficiently. In the

above benchmark all methods of the iterator are inline and

in principle correspond exactly to the C-style code. It has to

be noted that the OOP-style code uses two iterators, and

good common-subexpression elimination should be

expected to reduce the two iterators to a single index

variable.

Complex numbers are a common abstraction in

scientific programming. The purpose of the Complex

benchmark is to measure the efficiency of Cþþ in

handling complex arithmetic by multiplying the elements

of two arrays containing complex numbers (defined with

a class). In C-style the calculation is performed by

explicitly writing out the real and imaginary parts while

in OOP-style complex addition and multiplication is done

using overloaded operations. The complex arithmetic is

all inlined in the OOP-style, so in principle the code

should run as fast as the version using explicit real and

imaginary parts.

4. Results and discussion

The process that has been set up in order to evaluate each

kernel in terms of performance and power is shown in Fig. 1.

Each OOPACK code was compiled using the Cþþ

compiler of the ARM Software Development Toolkit

v2.50 [2], which provided both the code size and the

minimum RAM requirements for the data of each kernel.

Next, the execution of the code using the ARM Debugger

provided the number of executed assembly instructions as

well as the total number of cycles. The ARM Debugger was

set to produce a trace file logging instructions and memory

accesses.

The trace file is then parsed by the profiler, in order to

obtain the number of data memory accesses. The profiler

that has been developed for this study, implements a parser

that has built-in look-up tables containing physical

measurements [23] of the base and overhead energy costs

in mA, for all types of instructions and instruction pairs. In

this way we obtain the total energy cost for the processor by

counting all instruction occurrences and by assigning them a

base and an overhead energy cost that depends upon the

instruction type and the addressing mode.

Finally, the number of executed instructions and the code

size is used as input to a memory power model (developed by

an industrial vendor), to calculate the energy consumption of

the instruction memory. In the same way, the number of data

memory accesses and the minimum RAM size are used to

compute the energy consumption of the data memory.

Experimental results concerning the code size of each

kernel, the number of executed instructions and cycles are

given in Table 3 for all OOPACK kernels. As it can be

observed, for the particular examples, the OO programming

style has a larger impact on the resulting code size than on

the number of executed instructions. This is reasonable,

since the use of objects increases significantly the code size

through the definition of classes, however, runtime is not

drastically increased mainly due to the use of inline methods

Fig. 1. Experiment set up for evaluating performance and power.
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and because the examples have been selected to exercise

object-oriented techniques. Code size refers only to the

kernel size, excluding library functions, since the aim is to

illustrate the effect of OOP on the programming style and its

consequences. Whether the performance penalty, which can

be up to 18%, is considered significant or not, depends on

the application. In any case, the results are in agreement

with previous studies and clearly demonstrate the so-called

abstraction penalty [19] when writing object-oriented code.

At this point, it is worth mentioning that the object-oriented

paradigm can achieve code savings if the application offers

possibilities for reuse. The OOPACK benchmarks that have

been discussed, being narrow in the number of performed

tasks, offer no opportunities for reusing code. However, the

software of embedded systems, due to their limited

resources, implements usually a single functionality and

consequently there is limited room for exploiting the reuse

advantages of object-oriented design.

Results concerning the required data memory size

and the number of data memory accesses are given in

Table 4. The RAM (this could be any type of random

access memory) size is almost the same for both

programming styles since the read-write data on which

the programs operate (vectors and matrices) are not

altered. For example, in the Iterator kernel, the data

memory size is dominated by the two arrays of double

with 1000 elements, for both C-style and OOP-style. The

differences in memory size between the C and OOP-style

for the Matrix and Iterator benchmarks are due to

multiple class instantiations, each one requiring its own

attributes (e.g. indices). The number of memory accesses

refers only to the benchmark kernel and consequently it

reflects the increased data transfers when abstract data

types are used, probably due to inefficient use of

registers. This is consistent with the observation in Ref.

[4] that one of the most striking differences between C

and Cþþ , is that Cþþ programs issue more

loads and stores than C programs. From a power

consumption point of view, this effect increases energy

dissipation even further since according to the physical

measurements [23] base and overhead costs for Load/

Store instructions are slightly higher than for other

instructions.

In Table 5 the energy that has been calculated using

instruction level and memory power models is presented

for all system components that have been considered.

The average OO penalty is the mean value of the

percentage by which energy is increased for each of the

OOPACK benchmarks. For the programs under study,

the most energy consuming system component is the

processor. The overall energy overhead might not be

critical for general purpose applications when perform-

ance and power constraints are relaxed, but should

certainly affect the decision whether to use object-

oriented code, when designing high-performance and

low power systems, such as portable multimedia proces-

sing units.

To extend our analysis to programs not especially written

for object-oriented applications, Tables 6 and 7 present

experimental results for the Gauss–Jordan elimination

algorithm with full pivoting (for a 2 £ 2 set of linear

equations), for integration of a simple function employing

the trapezoidal rule and for the QuickSearch algorithm [17].

All algorithms have been implemented in C and Cþþ . (The

data memory energy is negligible for these programs). To

Table 5

Comparison of energy consumption for all system components (in mJ)

Benchmark Processor Instr. memory Data memory System

Max_c 0.220 0.0181 0.0287 0.267

Max_oop 0.253 0.0206 0.0573 0.331

Matrix_c 18.148 2.234 6.886 27.264

Matrix_oop 19.534 2.406 8.736 30.666

Iterator_c 1.272 0.176 0.388 1.836

Iterator_oop 1.382 0.189 0.467 2.037

Complex_c 3.353 0.472 1.725 5.549

Complex_oop 3.632 0.517 2.047 6.195

Avg. OOP penalty 9.90% 9.61% 41.39% 14.76%

Table 4

Memory comparison between C_style and OOP_style for all kernels

Benchmark RAM size (bytes) Mem_accesses

Max_c 8020 8043

Max_oop 8020 16,035

OOP penalty 99.37%

Matrix_c 21,620 1,226,765

Matrix_oop 21,656 1,555,328

OOP penalty 26.78%

Iterator_c 16,020 79,063

Iterator_oop 16,048 95,063

OOP penalty 20.24%

Complex_c 32,020 256,992

Complex_oop 32,020 304,996

OOP penalty 18.68%

Table 3

Performance comparison between C_style and OOP_style for all kernels

Benchmark Code size (bytes) Instructions Cycles

Max_c 180 50,536 77,118

Max_oop 212 56,032 91,605

OOP Penalty 17.78% 10.88% 18.79%

Matrix_c 308 5,402,229 8,303,851

Matrix_oop 424 5,625,529 9,051,974

OOP Penalty 37.66% 4.13% 9.00%

Iterator_c 260 433,042 635,096

Iterator_oop 356 450,049 677,103

OOP Penalty 36.92% 3.93% 6.61%

Complex_c 620 1,041,241 1,606,642

Complex_oop 804 1,084,256 1,710,665

OOP Penalty 29.68% 4.13% 6.47%
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summarize our findings from these applications and the

OOPACK benchmarks, the following observations can be

made: object-orientation increases both the number of

executed instructions as well as the number of accesses to

the data memory. The code, which for embedded systems

applications cannot take advantage of reuse possibilities,

also increases for the OOP style. In terms of energy

consumption, the effect of the instruction count on both the

processor and the instruction memory power and the

significant increase of data memory accesses, introduces a

significantly penalty to the total system power for OO

programs.

5. Conclusions

Although object-oriented programming is gaining

increased acceptance, embedded system designers should

consider the performance penalty that is introduced by

the use of object-oriented code. In this paper, it has been

demonstrated, through the compilation and execution of

benchmarks on an embedded processor simulator, that

OOP can result in a significant increase of both

execution time and power consumption. In embedded

systems where low power operation is one of the primary

requirements, object oriented techniques can result in an

energy dissipation overhead in all system components

such as the processor core, the instruction and data

memories. According to experimental results for the

ARM7 processor, object-oriented programming

can increase the number of executed instructions as

well as the number of memory accesses, increasing

proportionally the instruction level and memory

power consumption. Moreover, since reuse possibilities

of OOP can often not be exploited in embedded

software, object-orientation can also increase the

code size, contributing even more to larger energy

dissipation.
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