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Abstract 
The instruction-level energy consumption modeling method proposed in [6] is evaluated and 
completed.  According to the proposed method the base and inter-instruction energy costs of the ARM7 
embedded processor as well as the energy cost due to different values in the instruction parameters are 
modeled. These models can be used in the estimation of the energy consumed by the processor to 
execute real software programs. A software tool has been developed for this estimation. In this article 
the energy models derived for the instructions of ARM7 embedded processor are analyzed and the 
energy estimation framework is presented. 
 
1. Introduction 
A large number of embedded computing 
applications are power or energy critical, that 
is power constraints form an important part of 
the design specification. Early work on 
processor analysis had focused on performance 
improvement without determining the power-
performance tradeoffs. Recently, significant 
research in low power design and power 
estimation and analysis has been developed.  

Embedded software power modeling 
techniques are distinguished into two main 
categories: a) physical measurement-based and 
b) simulation-based ones. In simulation-based 
methods, energy consumed by software is 
estimated by calculating the energy 
consumption of various components in the 
target processor through simulations. The main 
drawback of these simulation-based techniques 
is the need of information about the circuit 
level design of the processor which is not 
usually available. In measurement-based 
approaches [1-3], the energy consumption of 
software is characterized by data obtained 
from real hardware. The advantage of 
measurement-based approaches is that the 
resulting energy model proves close to the 
actual energy behavior of the processor. 

In measurement techniques, a common 
practice is to associate instructions running on 
the processor with their corresponding energy 
cost. A measuring environment has been 
proposed by the authors in [7] for the 
measurement of the instantaneous current of 
the processor during the execution of the 
instructions and an instruction-level energy 
consumption modeling methodology has been 
proposed [8] aiming in the creation of highly 

accurate models. In this paper the results of our 
experiments are presented and the achieved 
accuracy of our method is given. Also, the way 
of the implementation of a software tool for 
the estimation of the energy consumed for the 
execution of programs is described. 
 
2. Instruction-level energy modeling 
The energy consumed during the execution of 
instructions can be distinguished in two 
amounts. The base cost, which is the energy 
amount needed for the execution of the 
operations which are imposed by the 
instructions, and the inter-instruction cost 
which corresponds to an energy overhead due 
to the changes in the state of the processor 
provoked by the successive execution of 
different instructions. Measurements for 
determining these two energy amounts for 
each instruction of the ARM7TDMI processor 
were taken and presented in [4]. However the 
base costs in [4] were for specific operand and 
address values (zero operand and immediate 
values and specific address values to minimize 
the effect of 1s). This base cost is called pure 
base cost. 

We have observed in our measurements 
that there is a strong dependency of the energy 
consumption of the instructions on the values 
of their parameters (operand values, 
addresses). To create accurate models this 
dependency has to be determined. Additional 
measurements were taken to satisfy this 
necessity. By incorporating these effects in our 
models the proposed method keeps its 
promised accuracy while it becomes very 
attractive since it can be easily implemented in 
software as an estimation tool.  



Making some appropriate experiments we 
observed that the effect of each energy-
sensitive factor on the energy cost of the 
instruction is independent of the effect of the 
other factors [4]. The distortion of our results 
from this conclusion is, most of the time, less 
than 2-3% and only in some marginal cases 
becomes more than 7%. According to this 
conclusion, the effect of the energy-sensitive 
factors can simply be summed to give the total 
energy amount.  

Other sources of energy consumption are 
conditions of the processor, which lead to an 
overhead in clock cycles because of the 
appearance of idle cycles. This is the case of 
the appearance of pipeline stalls. The effect of 
such cases on the energy consumption was 
measured and modeled.  

According to the above, the energy, Ei, 
consumed during the execution of the i 
instruction can be modeled as: 
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where bi is the pure base cost of the i 
instruction, ai,j and Ni,j is the coefficient and the 
number of 1s of the j energy-sensitive factor of 
the i instruction, respectively.  

Having modeled the energy cost of the 
instructions, the energy consumed for running 
a program of n instructions can be estimated: 
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where OI,j is the inter-instruction cost of the 
instructions i and j, and e is the cost of a 
pipeline stall. 
 
3. Pure base cost and inter-instruction 
cost models - results 

The completed models for the instruction-
level energy consumption of the ARM7TDMI 
created according to the proposed 
methodology can be found in [5]. Thousand 
experiments corresponding to the execution of 
loops of instruction instances on the processor 
to realize the appropriate processor conditions 
referred in [5] have been performed. For the 
measurement of the instantaneous current of 
the processor the measuring environment 
proposed in [7] was employed. Pure base costs 
of all the instructions and for all the addressing 
modes are given. Since the number of the 
possible instruction pairs (taking into account 
the addressing modes) is enormous, groups of 
instructions and groups of addressing modes 
according to the resources they utilize, have 
been formed and inter-instruction costs have 
been given only for representatives from these 
groups. In this way we keep the size of the 
required model values reasonable without 

significant degradation of the accuracy (less 
than 5% in the inter-instruction cost by using 
only representative instructions).  

Most of the values of the pure base costs 
present a difference less than 20% in the 
energy of the instructions which are executed 
in the same number of cycles. Most of the 
values of the inter-instruction costs have 
negative sign as it was expected. The 
contribution of the inter-instruction costs, as 
they are calculated according the proposed 
method, remains small. As it can be observed 
by our models most of the inter-instruction 
costs are less than 5% of the corresponding 
pure base costs while almost all the cases are 
covered by an 15% percentage. 

To determine the accuracy of the method a 
number of programs with various instructions 
were created. In these instructions the effect of 
energy sensitive factors wasn’t taken into 
account. The error was found to be up to 1.5%.  
 
4. Energy dependency on instruction 
level parameters – results 

The dependency of the energy of the 
instructions on the values of the instruction 
parameters and the operands, called energy 
sensitive factors, was also studied. Energy 
depends on the number of 1s in the word 
structures of these entities. The energy-
sensitive factors are the register numbers, the 
register values, the immediate values, the 
operand values, the operand addresses and the 
fetch addresses of the instructions. 

This energy dependency can be 
approximated with sufficient accuracy by 
linear functions. Coefficients should be 
derived for each instruction for every energy 
sensitive factor. However, appropriate 
grouping of the instructions is used to keep 
reasonable the number of required coefficients 
to increase the applicability of the method 
without significant loss in the accuracy.  

The grouping of the instructions for the 
derivation of the coefficients and the 
corresponding measurements are presented in 
[5]. According to the results the linear 
dependency mentioned above is obvious. 
Some results are presented here. In Figure 1 
the effect of the register number for data-
processing instructions in immediate 
addressing mode is presented. The actual 
physical measurements versus estimated 
energy values for the ADC instruction in 
scaled register offset addressing mode is 
shown in Table 1 where the achieved for the 
selected coefficient accuracy resulted is also 
given. The error is less than 3%. Such error 
values characterize all the selected coefficients.  

 



 
Fig. 1 The effect of register number for data-

processing instructions  
 

Table 1: Actual physical measurements versus 
estimated energy values (nj) for the ADC instruction  

#1s Estim. Meas. % error
0 0.874 0.855 2.20 
2 0.936 0.929 0.74 
2 0.936 0.924 1.23 
5 1.028 1.040 1.19 
6 1.059 1.067 0.77 
8 1.121 1.119 0.16 
8 1.121 1.124 0.28 
9 1.151 1.124 2.47 
7 1.090 1.088 0.17 
5 1.028 1.054 2.46 
8 1.121 1.114 0.61 
4 0.997 1.023 2.51 

 
To evaluate the absolute accuracy of our 

modeling approach, real programs were used 
as benchmarks. The corresponding assembly 
listings were extracted from C programs by 
utilizing the facilities of the armcc tool, 
shipped with the ARM ADS software 
distribution. The energy consumption at each 
clock cycle is measured and estimations for the 
instructions are produced based on the derived 
models. The overall energy dissipation is 
calculated by equation (2) in order to sum up 
all the individual contributions that relate to 
variations in the energy consumption at the 
instruction level. According to our results the 
error of our approach in real life programs was 
found to be less than 5%. 
 
5. Software energy estimation 
framework 

This section describes the main features 
of the software power estimation framework 
that has been developed for the ARM7TDMI 
processor. The software (hereafter “Energy 
Profiler”) employs the instruction-level power 
models that have been presented, enabling 
exploration of various alternatives of a given 
program, in order to optimize its power 
consumption. The Energy Profiler receives as 
input the trace file of executed assembly 

instructions and estimates the base and inter-
instruction energy cost of the program. 
 
5.1 Kernel of the Program 
The kernel of the program, which is written in 
the ANSI C programming language [9], hard-
codes the derived instruction-level energy 
models. An overview of the energy estimation 
process is shown in Figure 2. 
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Fig. 2: Energy estimation process 
 
Energy estimation is initiated by compiling the 
source file of the program under study with 
one of the available compilers of the ARM 
processor family [10]. Compiling the program 
provides both the code size and the minimum 
RAM requirements for the data memory. Next, 
the execution of the code using the Debugger 
generates the trace file and provides the 
number of executed assembly instructions.  
 The trace file which is then parsed serially 
by the Energy Profiler, contains two kind of 
entries: Memory lines that indicate an access to 
the data or instruction memory for fetching 
data or opcodes, respectively, and Instruction 
lines which indicate the conditional execution 
of an assembly instruction.  
 Each time the profiler identifies an 
instruction line it calculates the energy 
consumption by proceeding to the following 
main steps: 
Step 1: Identification of instruction category 
Step 2: Identification of specific instruction 
Step 3: Identification of addressing mode 
Step 4: Base Energy Cost calculation 
Step 5: Inter-instruction Energy Cost 

calculation 
Step 6: Modification of base cost according to  
            Energy Sensitive Factors 
Concerning the first step, the profiler looks for 
specific patterns in the operation code bits. To 
facilitate the organization and retrieval of 
information, the search for the specific 
instruction category, is performed by 
traversing a binary tree, in which each node 



corresponds to one bit of the opcode. Each 
node has two descendants: the path to the left 
subtree is followed if the corresponding bit of 
the parent node is 0, while the right subtree is 
followed otherwise. The leaves of the tree 
contain the information that is being sought. 
For example, the binary tree for deciding the 
instruction category based on the values of 
several bits is shown in Figure 3. 
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Fig.  3: Binary Tree for Instruction Categories  
 

Concerning the implementation of the binary 
trees in C, each node is a structure (struct) [9] 
with four fields: a) data which holds the 
node’s data, b) bit which holds the value of the 
corresponding bit in the opcode, c) two 
pointers to the left and right subtrees. 
 Constructing the trees is not a trivial task, 
since in many cases the trees consists of a few 
tens of nodes, each of which should receive the 
correct values for data and bit variables. Hard-
coding the information by hand is an error-
prone process. For this reason, the proposed 
approach separates the process of 
implementing the trees from entering data into 
them. In this way, the process can partly be 
automated and data can be easily verified since 
information is not ‘hidden’ into the code.  
 The information that is to be organized in 
each binary tree is stored in a string, which 
represents the pre-order traversal (root-left-
right) of the tree. For example, the string that 
corresponds to the binary tree of Figure 2 is: 
“1B1A191807#0004#00#01170414#09#0007#
00#02#00#0019#0304#03#041A19#05#0619#
0718#07#08$” 
 Each node is represented in the string by 
two hexadecimal digits, which correspond to 
the bit variable of the node. If the digits are 
preceded by the symbol ‘#’, the corresponding 
node is a leaf node. In that case, the 
information represented by the two digits is 
stored to the data variable of the node. The 
symbol ‘$’ indicates the end of the string and 
ends the construction of the tree. The 
following recursive pseudocode constructs a 

binary tree from the information stored in a 
string. Essentially, the algorithm traverses in 
pre-order a binary tree that is symbolically 
represented in the string and constructs in 
parallel the binary tree as linked nodes. 
 
Functio createTree n 
Input: string 
Output: root node of the binary tree  
{ 
   Read next two digits (HEX_INFO) 
   if $, exit 
 
   Create node x 
   if x is leaf_node  
      place HEX_INFO to x.data 
   else 
      place –1 to x.data 
      place HEX_INFO to x.bit 
      createTree(rest_of_string) 
      place returned node to    
         x.left_child 
 
      createTree(rest_of_string) 
      place returned node to  
         x.right_child 
   end_if 
 
   return x 
} 
 
 Once the specific instruction category 
(represented by a unique number) is found, it is 
used as index in an array of pointers to trees, 
and the selected tree is employed to obtain the 
specific instruction that has been executed. 
Next, a third binary tree (specific for each 
instruction) is traversed, in order to extract the 
addressing mode of the executed assembly 
instruction. 
 Finally, the number corresponding to the 
addressing mode and the instruction category 
are used as indices in a two-dimensional table 
that contains the physical measurements for 
the base energy costs, in nJ.  
 Concerning the inter-instruction energy 
cost calculation, which is associated with the 
execution of adjacent assembly instructions, 
the groups that have been determined during 
the derivation of the corresponding models 
have been employed in the profiler. The inter-
instruction costs have been placed in two-
dimensional arrays, while the information 
extracted during base cost calculation 
(instruction category, type, addressing mode) 
has been used both for selecting the 
appropriate array as well as for the indices that 
specify an element. To be able to compare two 
adjacent instructions, after parsing each 
instruction line of the trace file, information is 
placed on a temporary buffer. 
 The final step consists of the modification 
of the pure base cost of each instruction 
according to the energy sensitive factors 
described earlier. The factors that have been 
implemented are: register numbers, immediate 



values, operand addresses and instruction fetch 
addresses. A separate function for each energy 
sensitive factor receives as input the number of 
1s of the word space and returns the amount of 
energy that has to be added, considering the 
corresponding coefficient. The kernel sums up 
the results for all energy factors and modifies 
accordingly the pure base cost for each 
instruction line.  
 In parallel, the number of executed 
instructions and the code size are used as input 
to a memory power model (developed by an 
industrial vendor) in order to calculate the 
energy consumption of the instruction memory 
(Fig. 2). In the same way, the number of data 
memory accesses and the minimum RAM size 
are used to compute the energy consumption of 
the data memory. These calculations are 
performed once the complete trace file has 
been parsed.  
 
5.2 Graphical User Interface 
The program includes a Graphical User 
Interface (GUI) that has been developed in 
Java. The GUI provides access to the kernel of 
the program for parsing an input trace file and 
displays the generated results in multiple tables 
and graphs. Among others, profiling results are 
displayed as dissipated energy distribution 
among system components, instruction 
categories and main instruction types. The GUI 
is also capable of comparing results for two or 
more trace files, thus enabling a comparative 
analysis of several programs, which aids in 
exploring the optimum solution of the design 
space.  
 The interface between the GUI and the 
kernel of the program is built upon an XML 
(Extensible Markup Language) document that 
is generated by the parser and is being read by 
the GUI. The XML format provides the 
possibility of using tags and attributes for 
delimiting pieces of data, leaving interpretation 
to the client application. XML data are not 
written on any temporary file; rather data are 
being transferred on the fly from the kernel of 
the program to the GUI, via the standard input 
and output streams. A sample screen of the 
GUI with comparative results for two 
programs is shown in Figure 4. 
 
Conclusions 
In this article our embedded software energy 
consumption estimation methodology was 
evaluated. All the factors which affect the 
energy consumed for the execution of a 
software structure were taken into account. An 
error up to 5% was found. A software energy 
estimation framework has been developed 
based on the derived models. 

 

 
Fig. 4: Sample screen of the GUI 
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