
Developing an Environment for Embedded Software Energy Estimation

S. Nikolaidis, A. Chatzigeorgiou1, T. Laopoulos

Department of Physics,Aristotle University of Thessaloniki,
 1Department of Applied Informatics, University of Macedonia,

54124, Thessaloniki, Greece

Abstract
The instruction-level energy consumption modeling method proposed in [6] is evaluated and
completed. According to the proposed method the base and inter-instruction energy costs of the ARM7
embedded processor as well as the energy cost due to different values in the instruction parameters are
modeled. These models can be used in the estimation of the energy consumed by the processor to
execute real software programs. A software tool has been developed for this estimation. In this article
the energy models derived for the instructions of ARM7 embedded processor are analyzed and the
energy estimation framework is presented.

1. Introduction
A large number of embedded computing
applications are power or energy critical, that
is power constraints form an important part of
the design specification. Early work on
processor analysis had focused on performance
improvement without determining the power-
performance tradeoffs. Recently, significant
research in low power design and power
estimation and analysis has been developed.

Embedded software power modeling
techniques are distinguished into two main
categories: a) physical measurement-based and
b) simulation-based ones. In simulation-based
methods, energy consumed by software is
estimated by calculating the energy
consumption of various components in the
target processor through simulations. The main
drawback of these simulation-based techniques
is the need of information about the circuit
level design of the processor which is not
usually available. In measurement-based
approaches [1-3], the energy consumption of
software is characterized by data obtained
from real hardware. The advantage of
measurement-based approaches is that the
resulting energy model proves close to the
actual energy behavior of the processor.

In measurement techniques, a common
practice is to associate instructions running on
the processor with their corresponding energy
cost. A measuring environment has been
proposed by the authors in [7] for the
measurement of the instantaneous current of
the processor during the execution of the
instructions and an instruction-level energy
consumption modeling methodology has been
proposed [8] aiming in the creation of highly

accurate models. In this paper the results of our
experiments are presented and the achieved
accuracy of our method is given. Also, the way
of the implementation of a software tool for
the estimation of the energy consumed for the
execution of programs is described.

2. Instruction-level energy modeling
The energy consumed during the execution of
instructions can be distinguished in two
amounts. The base cost, which is the energy
amount needed for the execution of the
operations which are imposed by the
instructions, and the inter-instruction cost
which corresponds to an energy overhead due
to the changes in the state of the processor
provoked by the successive execution of
different instructions. Measurements for
determining these two energy amounts for
each instruction of the ARM7TDMI processor
were taken and presented in [4]. However the
base costs in [4] were for specific operand and
address values (zero operand and immediate
values and specific address values to minimize
the effect of 1s). This base cost is called pure
base cost.

We have observed in our measurements
that there is a strong dependency of the energy
consumption of the instructions on the values
of their parameters (operand values,
addresses). To create accurate models this
dependency has to be determined. Additional
measurements were taken to satisfy this
necessity. By incorporating these effects in our
models the proposed method keeps its
promised accuracy while it becomes very
attractive since it can be easily implemented in
software as an estimation tool.

Making some appropriate experiments we
observed that the effect of each energy-
sensitive factor on the energy cost of the
instruction is independent of the effect of the
other factors [4]. The distortion of our results
from this conclusion is, most of the time, less
than 2-3% and only in some marginal cases
becomes more than 7%. According to this
conclusion, the effect of the energy-sensitive
factors can simply be summed to give the total
energy amount.

Other sources of energy consumption are
conditions of the processor, which lead to an
overhead in clock cycles because of the
appearance of idle cycles. This is the case of
the appearance of pipeline stalls. The effect of
such cases on the energy consumption was
measured and modeled.

According to the above, the energy, Ei,
consumed during the execution of the i
instruction can be modeled as:

∑+=
i

jijiii NabE ,, (1)

where bi is the pure base cost of the i
instruction, ai,j and Ni,j is the coefficient and the
number of 1s of the j energy-sensitive factor of
the i instruction, respectively.

Having modeled the energy cost of the
instructions, the energy consumed for running
a program of n instructions can be estimated:

 (2) ∑∑∑ ++=
−

+ ε
1

1
1,

1

n

ii

n

i OEPE

where OI,j is the inter-instruction cost of the
instructions i and j, and e is the cost of a
pipeline stall.

3. Pure base cost and inter-instruction
cost models - results

The completed models for the instruction-
level energy consumption of the ARM7TDMI
created according to the proposed
methodology can be found in [5]. Thousand
experiments corresponding to the execution of
loops of instruction instances on the processor
to realize the appropriate processor conditions
referred in [5] have been performed. For the
measurement of the instantaneous current of
the processor the measuring environment
proposed in [7] was employed. Pure base costs
of all the instructions and for all the addressing
modes are given. Since the number of the
possible instruction pairs (taking into account
the addressing modes) is enormous, groups of
instructions and groups of addressing modes
according to the resources they utilize, have
been formed and inter-instruction costs have
been given only for representatives from these
groups. In this way we keep the size of the
required model values reasonable without

significant degradation of the accuracy (less
than 5% in the inter-instruction cost by using
only representative instructions).

Most of the values of the pure base costs
present a difference less than 20% in the
energy of the instructions which are executed
in the same number of cycles. Most of the
values of the inter-instruction costs have
negative sign as it was expected. The
contribution of the inter-instruction costs, as
they are calculated according the proposed
method, remains small. As it can be observed
by our models most of the inter-instruction
costs are less than 5% of the corresponding
pure base costs while almost all the cases are
covered by an 15% percentage.

To determine the accuracy of the method a
number of programs with various instructions
were created. In these instructions the effect of
energy sensitive factors wasn’t taken into
account. The error was found to be up to 1.5%.

4. Energy dependency on instruction
level parameters – results

The dependency of the energy of the
instructions on the values of the instruction
parameters and the operands, called energy
sensitive factors, was also studied. Energy
depends on the number of 1s in the word
structures of these entities. The energy-
sensitive factors are the register numbers, the
register values, the immediate values, the
operand values, the operand addresses and the
fetch addresses of the instructions.

This energy dependency can be
approximated with sufficient accuracy by
linear functions. Coefficients should be
derived for each instruction for every energy
sensitive factor. However, appropriate
grouping of the instructions is used to keep
reasonable the number of required coefficients
to increase the applicability of the method
without significant loss in the accuracy.

The grouping of the instructions for the
derivation of the coefficients and the
corresponding measurements are presented in
[5]. According to the results the linear
dependency mentioned above is obvious.
Some results are presented here. In Figure 1
the effect of the register number for data-
processing instructions in immediate
addressing mode is presented. The actual
physical measurements versus estimated
energy values for the ADC instruction in
scaled register offset addressing mode is
shown in Table 1 where the achieved for the
selected coefficient accuracy resulted is also
given. The error is less than 3%. Such error
values characterize all the selected coefficients.

Fig. 1 The effect of register number for data-

processing instructions

Table 1: Actual physical measurements versus
estimated energy values (nj) for the ADC instruction

#1s Estim. Meas. % error
0 0.874 0.855 2.20
2 0.936 0.929 0.74
2 0.936 0.924 1.23
5 1.028 1.040 1.19
6 1.059 1.067 0.77
8 1.121 1.119 0.16
8 1.121 1.124 0.28
9 1.151 1.124 2.47
7 1.090 1.088 0.17
5 1.028 1.054 2.46
8 1.121 1.114 0.61
4 0.997 1.023 2.51

To evaluate the absolute accuracy of our

modeling approach, real programs were used
as benchmarks. The corresponding assembly
listings were extracted from C programs by
utilizing the facilities of the armcc tool,
shipped with the ARM ADS software
distribution. The energy consumption at each
clock cycle is measured and estimations for the
instructions are produced based on the derived
models. The overall energy dissipation is
calculated by equation (2) in order to sum up
all the individual contributions that relate to
variations in the energy consumption at the
instruction level. According to our results the
error of our approach in real life programs was
found to be less than 5%.

5. Software energy estimation
framework

This section describes the main features
of the software power estimation framework
that has been developed for the ARM7TDMI
processor. The software (hereafter “Energy
Profiler”) employs the instruction-level power
models that have been presented, enabling
exploration of various alternatives of a given
program, in order to optimize its power
consumption. The Energy Profiler receives as
input the trace file of executed assembly

instructions and estimates the base and inter-
instruction energy cost of the program.

5.1 Kernel of the Program
The kernel of the program, which is written in
the ANSI C programming language [9], hard-
codes the derived instruction-level energy
models. An overview of the energy estimation
process is shown in Figure 2.

Source Program

(in C/C++)

Code size
RAM requirements

#instructions

#memory accesses

ARM SDT 2.50

ARM Debugger

Trace File

Profiler

Data Memory Energy

Instruction Memory Energy

Memory Model

Processor

Energy

Physical
Measurements

GUIGUI

compile

execute

Source Program
(in C/C++)

Code size
RAM requirements

#instructions

#memory accesses

ARM SDT 2.50

ARM Debugger

Trace File

Profiler

Data Memory Energy

Instruction Memory Energy

Memory Model

Processor

Energy

Physical
Measurements

GUIGUI

Source Program
(in C/C++)

Code size
RAM requirements

#instructions

#memory accesses

ARM SDT 2.50

ARM Debugger

Trace File

Profiler

Data Memory Energy

Instruction Memory Energy

Memory Model

Processor

Energy

Physical
Measurements

GUIGUI

compile

execute

Fig. 2: Energy estimation process

Energy estimation is initiated by compiling the
source file of the program under study with
one of the available compilers of the ARM
processor family [10]. Compiling the program
provides both the code size and the minimum
RAM requirements for the data memory. Next,
the execution of the code using the Debugger
generates the trace file and provides the
number of executed assembly instructions.
 The trace file which is then parsed serially
by the Energy Profiler, contains two kind of
entries: Memory lines that indicate an access to
the data or instruction memory for fetching
data or opcodes, respectively, and Instruction
lines which indicate the conditional execution
of an assembly instruction.
 Each time the profiler identifies an
instruction line it calculates the energy
consumption by proceeding to the following
main steps:
Step 1: Identification of instruction category
Step 2: Identification of specific instruction
Step 3: Identification of addressing mode
Step 4: Base Energy Cost calculation
Step 5: Inter-instruction Energy Cost

calculation
Step 6: Modification of base cost according to
 Energy Sensitive Factors
Concerning the first step, the profiler looks for
specific patterns in the operation code bits. To
facilitate the organization and retrieval of
information, the search for the specific
instruction category, is performed by
traversing a binary tree, in which each node

corresponds to one bit of the opcode. Each
node has two descendants: the path to the left
subtree is followed if the corresponding bit of
the parent node is 0, while the right subtree is
followed otherwise. The leaves of the tree
contain the information that is being sought.
For example, the binary tree for deciding the
instruction category based on the values of
several bits is shown in Figure 3.

26

1
27

26

0

25

0

#5

0

#6

1
25

#7 24

#7 #8

1

1

1

0

0

25 25

24 #0 #3 4

7 23 #3 #4

#0 4

#0

#0

4 #0

#1 20

#9

7

#0 #2

1

1 1

1 1

1

1

1

1

1 1

0

0

0

0

0

0 0

0

0

0

0

Block Data
Transfer

Fig. 3: Binary Tree for Instruction Categories

Concerning the implementation of the binary
trees in C, each node is a structure (struct) [9]
with four fields: a) data which holds the
node’s data, b) bit which holds the value of the
corresponding bit in the opcode, c) two
pointers to the left and right subtrees.
 Constructing the trees is not a trivial task,
since in many cases the trees consists of a few
tens of nodes, each of which should receive the
correct values for data and bit variables. Hard-
coding the information by hand is an error-
prone process. For this reason, the proposed
approach separates the process of
implementing the trees from entering data into
them. In this way, the process can partly be
automated and data can be easily verified since
information is not ‘hidden’ into the code.
 The information that is to be organized in
each binary tree is stored in a string, which
represents the pre-order traversal (root-left-
right) of the tree. For example, the string that
corresponds to the binary tree of Figure 2 is:
“1B1A191807#0004#00#01170414#09#0007#
00#02#00#0019#0304#03#041A19#05#0619#
0718#07#08$”
 Each node is represented in the string by
two hexadecimal digits, which correspond to
the bit variable of the node. If the digits are
preceded by the symbol ‘#’, the corresponding
node is a leaf node. In that case, the
information represented by the two digits is
stored to the data variable of the node. The
symbol ‘$’ indicates the end of the string and
ends the construction of the tree. The
following recursive pseudocode constructs a

binary tree from the information stored in a
string. Essentially, the algorithm traverses in
pre-order a binary tree that is symbolically
represented in the string and constructs in
parallel the binary tree as linked nodes.

Functio createTree n
Input: string
Output: root node of the binary tree
{
 Read next two digits (HEX_INFO)
 if $, exit

 Create node x
 if x is leaf_node
 place HEX_INFO to x.data
 else
 place –1 to x.data
 place HEX_INFO to x.bit
 createTree(rest_of_string)
 place returned node to
 x.left_child

 createTree(rest_of_string)
 place returned node to
 x.right_child
 end_if

 return x
}

 Once the specific instruction category
(represented by a unique number) is found, it is
used as index in an array of pointers to trees,
and the selected tree is employed to obtain the
specific instruction that has been executed.
Next, a third binary tree (specific for each
instruction) is traversed, in order to extract the
addressing mode of the executed assembly
instruction.
 Finally, the number corresponding to the
addressing mode and the instruction category
are used as indices in a two-dimensional table
that contains the physical measurements for
the base energy costs, in nJ.
 Concerning the inter-instruction energy
cost calculation, which is associated with the
execution of adjacent assembly instructions,
the groups that have been determined during
the derivation of the corresponding models
have been employed in the profiler. The inter-
instruction costs have been placed in two-
dimensional arrays, while the information
extracted during base cost calculation
(instruction category, type, addressing mode)
has been used both for selecting the
appropriate array as well as for the indices that
specify an element. To be able to compare two
adjacent instructions, after parsing each
instruction line of the trace file, information is
placed on a temporary buffer.
 The final step consists of the modification
of the pure base cost of each instruction
according to the energy sensitive factors
described earlier. The factors that have been
implemented are: register numbers, immediate

values, operand addresses and instruction fetch
addresses. A separate function for each energy
sensitive factor receives as input the number of
1s of the word space and returns the amount of
energy that has to be added, considering the
corresponding coefficient. The kernel sums up
the results for all energy factors and modifies
accordingly the pure base cost for each
instruction line.
 In parallel, the number of executed
instructions and the code size are used as input
to a memory power model (developed by an
industrial vendor) in order to calculate the
energy consumption of the instruction memory
(Fig. 2). In the same way, the number of data
memory accesses and the minimum RAM size
are used to compute the energy consumption of
the data memory. These calculations are
performed once the complete trace file has
been parsed.

5.2 Graphical User Interface
The program includes a Graphical User
Interface (GUI) that has been developed in
Java. The GUI provides access to the kernel of
the program for parsing an input trace file and
displays the generated results in multiple tables
and graphs. Among others, profiling results are
displayed as dissipated energy distribution
among system components, instruction
categories and main instruction types. The GUI
is also capable of comparing results for two or
more trace files, thus enabling a comparative
analysis of several programs, which aids in
exploring the optimum solution of the design
space.
 The interface between the GUI and the
kernel of the program is built upon an XML
(Extensible Markup Language) document that
is generated by the parser and is being read by
the GUI. The XML format provides the
possibility of using tags and attributes for
delimiting pieces of data, leaving interpretation
to the client application. XML data are not
written on any temporary file; rather data are
being transferred on the fly from the kernel of
the program to the GUI, via the standard input
and output streams. A sample screen of the
GUI with comparative results for two
programs is shown in Figure 4.

Conclusions
In this article our embedded software energy
consumption estimation methodology was
evaluated. All the factors which affect the
energy consumed for the execution of a
software structure were taken into account. An
error up to 5% was found. A software energy
estimation framework has been developed
based on the derived models.

Fig. 4: Sample screen of the GUI

References
[1] V. Tiwari, S. Malik and A. Wolfe, “Power

Analysis of Embedded software: A First
Step Towards Software Power
Minimization”, IEEE Trans. on VLSI
Systems, pp. 437-445, Dec. 1994

[2] S. Steinke, M. Knauer, L. Wehmeyer, P.
Marwedel, “An Accurate and Fine Grain
Instruction-Level Energy Model supporting
Software Optimizations,” in Proc. of
PATMOS, Switzerland, Sept 2001.

[3] N. Chang, K. Kim, and H. G. Lee, “Cycle-
Accurate Energy Consumption
Measurement and Analysis: Case Study of
ARM7TDMI,” IEEE Trans. on VLSI
Systems, pp. 146-154, Apr. 2002.

[4] S. Nikolaidis, N. Kavvadias, P.
Neofotistos, “Instruction level power
measurements and analysis”, IST-2000-
30093/EASY Project, Deliverable D15,
Sept 2002.

[5] S. Nikolaidis, N. Kavvadias, P.
Neofotistos, “Instruction level power
models for embedded processors”, IST-
2000-30093/EASY Project, Deleverable
D21, Dec 2002. Web site: easy.intranet.gr

[6] S. Nikolaidis, Th. Laopoulos, “Instruction-
level Power Consumption Estimation of
Embedded Processors for Low Power
Applications,” Proc. of IDAACS, pp.139-
142, Foros, Ukraine, 2001.

[7] T. Laopoulos, P. Neofotistos, K.
Kosmatopoulos, S. Nikolaidis,
“Measurement of Current Variations for
the Estimation of Software-related Power
Consumption,” accepted in IEEE Trans. on
Instrumentation and Measurement.

[8] S. Nikolaidis et all, “Instrumentation set-
up for Instruction level Power Modeling,”
in Proc. of PATMOS, Sevilla, Sept.2002

[9] Kernighan B., Ritchie D.M., The C
Programming Language, Prentice-Hall,
Upper Saddle River, NJ, 1988

[10]ARM Developer Suite,
http://www.arm.com/devtools/ads?OpenDo
cument

