

Maintenance Patterns of large-scale
PHP Web Applications

Panos Kyriakakis
School of Science and Technology

Hellenic Open University
Patras, Greece
panos@salix.gr

Alexander Chatzigeorgiou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

achat@uom.gr

Abstract—Scripting languages such as PHP have been
criticized as inadequate for supporting maintenance of large-
scale software projects. In this paper we attempt to provide
insight into the way that five large and well-known PHP
applications evolved over time. Several aspects of their history
are examined including the amount of unused code, the removal
of functions, the use of libraries, the stability of their interfaces,
the migration to object-orientation and the evolution of
complexity. The results suggest that these systems undergo
systematic maintenance which is driven by targeted design
decisions and evolution is by no means hindered by the
underlying programming language.

Keywords—software evolution; web applications; survival
analysis; software libraries; PHP; scripting language

I. INTRODUCTION
Various anecdotal sources in computer science claimed for

long that despite the tremendous popularity of scripting
languages [2], such as those employed in LAMP (Linux-
Apache-MySQL – Perl/Python/PHP), are not suitable for
proper and professional software engineering [10]. In other
words, the proponents of traditional compiled languages such
as Java and C++ claimed that software projects based on
scripting languages lack the architectural properties that allow
systematic, effortless and viable maintenance.

Such attacks to the scripting languages are less frequently
documented in scientific papers, although the academic
community usually tends to reject the change in programming
practices brought about by scripting [10]. This skepticism is
also reflected by the fact that in most academic institutions
around the world, computing curricula do not rely on scripting
or dynamic languages for their CS101 course. The number of
empirical studies in the software engineering community on
projects built with typeless scripting languages is also
significantly smaller than that of strongly-typed, ‘system
programming’ languages.

On the other hand, evidence suggests that scripting
languages enhance programmer productivity [12]. Prechelt
[14] presented results according to which implementation
times for programs written in scripting languages, such as
Perl, Python, Rexx, and Tcl, were about one-half of the time
required to implement the same functionality in C/C++/Java.
The adoption of scripting languages by software practitioners
is also reflected in the increased penetration to open-source

development. In Sourceforge1 PHP's project count is in the
third place after Java (52,234 projects) and C++ (42,081
projects) numbering 33,259 projects and overcoming C
counting 31,194 projects.

In this paper we present an empirical study on five large
open-source web applications implemented with the popular
scripting language PHP, to investigate the evolution of web
applications regarding their maturity, quality and adoption of
the object oriented paradigm. We have examined several
aspects of software evolution that might provide hints as to
whether good practices in development and management have
been followed: The existence of dead/unused code in any
software system is a burden consuming resources and posing
threats to maintainability. We examine the presence and
survivability of unused code as a means of detecting
architectural changes in the history of the examined systems.
In scripting languages a major source of unused code is the
employment of third party libraries, which at the same time is
an accepted good practice in software development and a
possible indication of maturity [1], [2]. In this context, we
investigated the amount of library code being used over time
in each system. Another factor implying software maturity is
the stability of the corresponding APIs, and therefore, we have
also examined six classes of possible API changes. Moreover,
we investigated the migration of the analyzed projects to the
object oriented paradigm as well as the evolution of their
complexity.

The rest of the paper is organized as follows: In Section II
we introduce the web applications that have been analyzed,
while in Section III we discuss issues and challenges related to
the analysis of the examined versions. Results on each of the
investigated aspects of software evolution are presented and
discussed in Section IV. Threats to validity are summarized in
section V. Related work on similar efforts for analyzing
software systems and previous work on scripting languages is
presented in Section VI. Finally, we conclude in Section VII.

II. APPLICATIONS
The software systems used in the case study have been

selected according to the following criteria:

1 http://sourceforge.net

• they should be well known projects with established
reputation in the open source community.

• they should have started in PHP versions prior to
version 5. The reason for this choice is that despite
the introduction of object-orientation in PHP 4, prior
to version 5 the support was quite limited (e.g. there
were no scope modifiers).

• they should have their code available in GitHub.
• they should have at least 30 unique tags in GitHub.

Our major concern was to select acknowledged projects
with a long history, large number of committers and even
larger number of users. According to Samoladas et al. [15] the
majority of open-source projects are abandoned after a short
time period, rendering them inappropriate for systematic
analysis of programming and maintenance habits.

The case study has been conducted on the following five
open source projects implemented in PHP:

1) Wordpess2. The most popular blogging software; it has a
vast community of both contributors and active users.

2) Drupal3. One of the most advanced CMS (Content
Management System). It is also characterized by a large and
active community.

3) PhpBB4. One of the most widely used forum software.
4) MantisBt5. Probably the most popular bug tracking

application written in PHP.
5) PhpMyAdmin6. The well-known MySQL administration

tool.
The abovementioned software systems are to a large extent

community driven and could be characterized as the founding
projects of web application development (considering the PHP
as programming language). They have set the standards and
powered most of the web content created in the last decade.

The fact that the examined projects have an enormous code
base and numerous user plug-ins dependent upon them,
implies that backward compatibility should never be broken.
Due to the projects long existence there are many versions
available. In Table I we show some statistics about the
selected projects. Cumulatively, we have studied 390 official
releases aggregating to 50 years of software evolution.

TABLE I. RELEASE STATISTICS FOR THE EXAMINED PROJECTS

Project Years
First Last Number

of
Releases Release Year Release Year

WordPress 9 1.5 2005 3.6.1 2013 71
Drupal 12 4.0.0 2002 7.23 2013 120
phpBB 12 2.0.0 2002 3.0.12 2013 37
MantisBt 8 1.0.0 2006 1.2.15 2013 33
phpMyAdmin 9 2.9.0 2006 4.1.6 2014 129

In the next table we outline the growth of basic size
measures. For the first and last release that has been examined,
the size of the source code in KLOCs and the size in code
blocks (number of functions and class methods) is shown.

2 http://wordpress.org/
3 https://drupal.org/
4 https://www.phpbb.com/
5 http://www.mantisbt.org/
6 http://www.phpmyadmin.net/

TABLE II. SIZE MEASURES FOR THE FIRST AND LAST RELEASE OF THE
EXAMINED PROJECTS

Project

First Last

Release KLOC Code
Blocks

Release KLOC Code
Blocks

WordPress 1.5 20 763 3.6.1 200 5154
Drupal 4.0.0 14 692 7.23 173 5140
phpBB 2.0.0 18 256 3.0.12 194 2389
MantisBt 1.0.0 68 2447 1.2.15 165 4904
phpMyAdmin 2.9.0 39 693 4.1.6 248 5343

The size growth reflected on the lines of code confirms

Lehman's 6th law of software evolution [8] which stipulates
that programs grow over time to accommodate pressure for
change and satisfy an increasing set of requirements. As
proposed by Xie et al. [21] the number of definitions can
provide an accurate indicator to study the size growth. Since in
PHP the only clearly defined structures are functions and class
methods, we measured their total number (designated as
number of code blocks). Lehman's 6th law is also vividly
confirmed in this context.

These systems have their roots back before PHP fully
supported object orientation and this adds another point of
interest because they combine procedural code and classes.
The poor support of object orientation in PHP to versions prior
to 5.3 lead to that coding style. Due to the mix of procedural
and object programming we do not differentiate between
functions and class methods in the applied survival analysis.

III. THE APPROACH
Each application has been analyzed with a software tool

that we developed for conducting source code analysis and
data collection in a uniform way (Section III.E). Available
versions have been downloaded from GitHub and then static
analysis of the source code has been performed to identify
function and method signatures, class definitions and function
usage data for the each version. The extracted information has
been stored to a database. Using the stored data we estimated
the survival function regarding unused and removed functions.
Moreover, we analyzed library usage and the degree of
conformance to the object-oriented paradigm by measuring the
ratio of class methods over the total number of
functions/methods. Finally, we investigated the stability of
function signatures as well as the evolution of complexity.
Next we discuss some key points in our analysis.

A. Challenges in the identification of unused code
In the first part of this study we focus on unused functions

and class methods i.e. functions which are not invoked by
other system functions or methods (i.e. FanIn=0). We have
deliberately avoided using the term 'dead code' as this usually
includes non-reachable code blocks, whereas our analysis
focuses only on functions which are not invoked. PHP is a
highly dynamic language and functions might be called in
various ways that static analysis as performed by currently
available tools cannot identify. These cases include:

• calls employing the Reflection API7,

7 http://www.php.net/manual/en/book.reflection.php

• call_user_func()8 and call_user_func_array()9 calls
• method invocations using the new operator with variable

class names
• Variable function names for static method calls such as

$class::method()
• variable function or method names such as $function() or

$object->$method().
• Automatic calls to methods such as __toString()10 or

Iterator::*()11

 For the cases where the function name is not a literal, it
may even be retrieved from database data. Functions can also
be invoked by extracting their name from the URL that users
enter in their web browser. Especially in applications that
employ the single front controller paradigm, which acts as the
unique entry point for an entire application, a large number of
controller actions might seem to be unused code. Thus, the
identification of unused code poses significant challenges and
can hardly be accurate. We refer to this type of calls as stealth
calls, and since they cannot be detected by static analysis tools
they are inevitably considered as unused code, posing a threat
to the analysis.

Another complication related to the aforementioned
limitations is the widely used practice of hooks. Hooks refer to
a functional implementation of the observer pattern that
provides an extension mechanism to functions. The simplest
implementation of a hook (Figure 1) is to have a global array
holding the registered hooks, a function to make hook
registrations (e.g. add_action) and finally a function to call the
corresponding function handlers for a given hook (e.g.
do_action). Thus, for a function that we want to extend, a call
to do_action can be made, with parameter a key for the
desired hook (e.g. 'my_hook'). That last call is made using
PHP's call_user_func() function, whose first argument is
a literal containing the desired function name. The use of
hooks is clearly not traceable with general purpose static
analysis tools.

Many projects employ hooks not only as an extension
point for third parties, but they also implement core
functionality in this way. For example, a significant portion of
the core functionality in WordPress takes advantage of the
hooking system. Additionally, plug-ins implemented in the
examined systems systematically take advantage of the
hooking mechanism.

The ideal solution to determine all actual function
invocations is to examine the code manually, a process that is
however infeasible even for medium sized applications. In
our study we have used Bergmann's phpDCD12 tool to analyze
the source code and extract unused code. To the best of our
knowledge, phpDCD is one of the most reliable dead/unused
code detectors for PHP, employing static analysis. However,
the limitations that have been discussed are valid.

8 http://www.php.net/manual/en/function.call-user-func.php
9 http://www.php.net/manual/en/function.call-user-func-array.php
10 http://www.php.net/manual/en/language.oop5.magic.php
11 http://www.php.net/manual/en/class.iterator.php
12 https://github.com/sebastianbergmann/phpdcd

/* global array of registered hooks */
$hooks = array();
/* function for registering hooks */
function add_action($hook, $funcName) {
 global $hooks;
 if(!isset($hooks[$hook])) {
 $hooks[$hook] = array();
 }
 $hooks[$hook][] = $funcName;
}
/* function for executing a particular hook */
function do_action($hook) {
 global $hooks;
 foreach($hooks[$hook] as $fn) {
 call_user_func($fn);
 }
}
/* extensible function */
function myFunc() {
 /* ... function code ... */
 do_action('my_hook');
}
/* extension */
function myHookFunc() {
}
/* registering a hook function */
add_hook('my_hook','myHookFunc');
Figure 1 Simplest implementation of hooks

B. Survival Analysis
Survival analysis models the time it takes for events to

occur and focuses on the distribution of the survival times. It
has been applied in many fields ranging from estimation of
time between failures for mechanical components, lifetime of
light bulbs, duration of unemployment in economics, time
until infection in health sciences and so on. In each context of
application it is necessary to provide an unambiguous
definition of the termination event.

Survival can by modeled by employing an appropriate
survival function. Non-parametric survival analysis does not
assume any underlying distribution for survival times. The
most common non-parametric analysis is Kaplan-Meier [6],
[13] where the survival function, illustrated graphically by the
corresponding Kaplan-Meier curve, refers to the probability of
an arbitrary subject in a population to survive t units of time
from the time it has been introduced.

Classical Kaplan-Meier analysis treats all subjects as if
they existed in the beginning of the study and therefore does
not allow the mapping of drops in the survival probability with
particular time points (releases in our case). To enable a more
detailed analysis of software evolution we also employ charts
illustrating the survival function (rather than the cumulative
probability to survive from time zero to ti) as follows:
Restricting observation to the discrete time points when
termination events occur t1, t2, t3, …, tn, we define r1,... ,rn to
be the number of subjects at risk and d1, d2,..., dn to be the
number of events at these time points. The probability of
surviving from zero to t1 is estimated by S(t1)=1-d1/r1, where
d1/r1 is the estimated proportion of subjects undergoing the
termination event in that interval. The probability of surviving
from t1 to t2 is given by S(t2)=1-d2/r2. Thus, the survival
function is equal to unity minus the hazard ratio di/ri :

S(ti)=1-di/ri

In contrast to most studies that employ survival analysis,
where the initial population is not enhanced by new entries, in
our case, we follow the approach by Pollock et al [13] and
Scaniello [16]. In particular, new code blocks added in each
version are treated as ‘staggered’ entries [13] and are added to
the existing population of functions which are “at risk”.

C. Survival regarding function usage
To apply the aforementioned survival analysis on the

usage of functions, the termination event refers to the time
point at which a function "becomes unused". A function or
method (for the sake of simplicity we will refer to both as
functions) becomes unused when there are no observable calls
to that function. The assumption that has been used, similarly
to Scaniello [16], is that once a function becomes unused in a
version, it remains unused to the end of the observation.

In order to calculate the survival function the following
mapping is proposed. The discrete time points of observation
ti are the consecutive versions of the project under study. In
each version, the functions and methods existing in that
version are said to be at risk, and the number is denoted as ri,
excluding those that were marked as terminated in previous
versions. Finally, di indicates the number of functions and
methods that become unused at version i.

Drupal and PhpMyAdmin contain a significant amount of
unit tests indicating the effort that is made towards quality
assurance; however, unit tests should not be counted as the
projects’ functional code. Unit tests are invoked from external
tools, like phpUnit13, and therefore their construction forces
them to appear as unused code in the project itself. Therefore,
unit tests are excluded from the survival analysis.

Moreover, we make the assumption that all functions and
methods can be characterized by the same survival function
regardless of the time they were added to the project. In other
words we assume that all functions can be characterized by the
same probability of becoming unused.

D. Survival regarding function removal
In subsection III.C we presented our approach for

analyzing the survival of functions and methods considering
as termination event the time point at which they become
unused. In this subsection we focus the survival analysis on
the removal of functions. In other words, we consider as
termination event the time point at which a function is
removed from the system. The reason for performing the
analysis at the function level (i.e. excluding class methods) is
that the systems under study are mainly functional and their
public API is mostly functional.

Moreover, since PHP does not provide visibility modifiers
to functions, the identification of the public API is not possible
through source code analysis. Developers should consult the
documentation in order to retrieve the subset of functions
belonging to the public API. However, updates to the
documentation are not performed systematically and as a
result API documentation matching the official releases is not
always reliable. Survival analysis regarding function removal

13 http://phpunit.de/

enables us to obtain an insight into the evolution of the public
API given that functions are by definition public.

The mapping for estimating the survival function with
respect to the removal of functions is similar. The discrete
time points of observation ti are the consecutive versions of
the project under study. At each version, ri represents the
number of functions being at risk including the functions that
survived from the previous version and the newly introduced
ones. The termination event is defined as the removal of a
function, meaning that the function signature is not defined in
the project any more. Thus, di refers to the number of
functions that are removed at version i.

E. Data collection and presentation software
A software tool has been developed to automate the

analysis. The tool has been implemented in PHP on top of the
Symfony14 framework. It has a web interface in order to add
projects for analysis and enable viewing of the results. The
backend of the tool runs several steps in order to collect and
analyze the projects. Initially it downloads from GitHub all
versions of the project's source code, runs pDepend15 to
retrieve basic file information and elementary metrics. Then, it
runs and imports the phpDCD tool to collect unused code data.
Source code parsing and abstract syntax tree analysis follows
to obtain function and method signatures. The aforementioned
data are stored in a database for each version of the project.
Using the stored data, the various analyses discussed in this
study are performed. Results are accessible from the "public"
section of the tool's web interface16.

IV. RESULTS AND DISCUSSION
A. Survival regarding function usage

Kaplan-Meier curves illustrating the percentage of system
functions surviving over successive software versions are
shown in Figure 2 for all examined projects (the horizontal
axis corresponds to the number of versions).

Figure 2 Kaplan-Meier survival plots regarding function usage

As it can be observed, for Drupal and MantisBt, the vast
majority of functions tend to remain used. For example, in

14 http://symfony.com
15 http://pdepend.org/
16 http://snf-451681.vm.okeanos.grnet.gr/

MantisBt, after 25 successive versions, almost 99% of the
initial number of functions are still invoked by other functions
in the project. For the other three systems, a non-negligible
percentage of functions is gradually becoming unused.

To provide further insight into the usage of functions and
allow a mapping to the corresponding releases, we plot the
survival function S(t) for each examined project in Figure 3.
The horizontal axis represents the consecutive versions and
the vertical axis the value of the survival function. The results
for each project are examined separately along with a
discussion of the major findings. In contrast to the previous
Kaplan-Meier curves, in these plots containing staggered
entries, we can also observe the impact of functions being
introduced in one version and not being used thereafter.
Moreover, library code is included in the analysis to
investigate its effect.

Figure 3 Survival functions regarding function usage and method additions.
Horizontal axis represents the consecutive versions. Left vertical axis
represents the value of the survival function, right vertical axis represents the
percentage of method additions.

The plots for phpBB and Drupal share the same
characteristics, since their survival function remains constant
for a long time period and then exhibits a significant drop at a
particular point of their evolution. For phpBB there is a large
drop in version 3.0.0 and for Drupal in version 7.0. According
to manual examination of their source code and their
documentation, both projects underwent major changes in the
corresponding version. Both projects extensively employed
the notion of hooks, not only as an extension mechanism, but
also for the implementation of the core functionality.
Additionally, in these versions object-orientation literally
invaded those projects.

In the other three projects, in the versions where the
survival function drops, after source code examination we
found that employment of vendor libraries took place. For
example, MantisBt uses ADOdb17 library, a widely used
database layer, and in both cases (versions 1.1.0 and 1.2.0)
there was an update of that library. Also in 1.1.0 the
development team introduced a SOAP API to the application.
For this reason the developers added the nuSoap18 library, a
very widely used library implementing SOAP server and

17 http://adodb.sourceforge.net/
18 http://nusoap.sourceforge.net/

client protocols. In version 1.2.0 they also added the ezc19
library, a library of general purpose components.

In WordPress according to the change log and blog entries
announcing version 2.7, enhancements have been so important
that it could be tagged as a major release, namely 3.0. Despite
these major changes the drop in the value of the survival
function in version 2.7 is rather small. In the next major
version 2.8, the drop of the survival function is larger;
however, according to the announcement blog entry the
enhancements have been less important. The question that
arises is why less important changes caused a larger change in
the survival function. A closer look at the unused functions in
version 2.8 provides further insight. The authors added the
SimplePie20 library for RSS feed consumption. A building
block has contributed to more than 50% of that version's
unused code. Despite the major enchantments in version 2.7
no building blocks were added. This supports our conclusion
that in web applications the key contributor to unused code are
the used building blocks and that developers pay attention to
keep the code clean from unused code.

In scripting languages like PHP, using a third party library,
implemented also in PHP, means that the library's code has to
be added to the application's code. There is no binding of
binaries as in the case of .jar files in Java. Unavoidably, using
a proportion of the library's functionality leads the rest of the
library code to remain unused.

Along with phpBB and Drupal, WordPress also employs
hooks as an extension mechanism to the public API, and
additionally uses it to implement core functionality. Its API is
also constantly growing due to the addition of stealth calls
resulting in regular drops in the survival function.

To summarize, four of the projects introduced code
appearing as unused due to the implementation of hooks and
three out of five, introduced a high percentage of unused code,
due to the incorporation of third party libraries.

Another point of interest is related to the versions where
drops in the survival function appear. In general, drops in the
survival function coincide with project's major versions. For
example, in phpMyAdmin, all eleven drops of the survival
curve coincide with the project's major versions. This implies
the maintenance strategy that has been used. New code, thus
new features, is added in major versions and in minor versions
only bug fixing is performed.

To illustrate this form of evolution, we tracked function
additions in the sample. In Figure 3 we show the additions of
functions/methods made in each version as a percentage of the
number of total functions/methods that were employed in the
previous version. A stalactite-stalagmite phenomenon is
evident: new code is added in major versions, where the
introduction of unused code is taking place as well.

Finally, we calculated the survival separately for functions
and class methods for MantisBt, PhpMyAdmin and
WordPress. Methods exhibit higher drops (implying that

19 http://ezcomponents.org/
20 http://simplepie.org/

functions have a higher survival probability than methods)
conforming to findings comparing C and C++ [18].

From the aforementioned observations it can be concluded
that in the examined large-scale PHP projects a rather “rich”
form of continuous maintenance is taking place involving the
incorporation of external libraries and the addition of new
code that takes advantages of the new libraries. In case
scripting languages were not suitable for evolving software,
these kinds of changes would be scarce and degrading over
time, which is not the case in the examined systems.

B. Survival regarding function removal
The focus of the analysis now changes, as the terminating

event is the removal of a function (rather than the ending of its
usage). Kaplan-Meier survival plots are shown in Figure 4. In
three out of the five projects a major drop can be observed at a
particular point in their history, implying the removal of a
large percentage of their functions. For Drupal and Wordpress
the drops are rather regular and less abrupt.

Figure 4 Kaplan-Meier survival plots regarding function removal

As in the previous Section, to obtain a better insight into
the corresponding phenomena, we show in Figure 5, plots of
survival functions for all projects, including library code, as
well as the percentage of added methods over the total number
of functions of each project. The results will be discussed
according to the pattern of the survival curve in relation to the
method additions.

MantisBt and phpBB exhibit the same pattern. There is
one hotspot, where the survival function drops and a
significant population of methods is added. The hotspot for
MantisBt is version 1.2.0, and for phpBB version 3.0.0. After
a manual inspection of the changes we found that,
approximately 62% and 45% respectively, of the removed
functions were replaced with class methods with the same
functionality. For example, in MantisBt the developers moved
wiki integration, upgrade module and graphs module into
object oriented, enumeration functions to the ENUM class and
part of the bug_api to the BugData class. In phpBB they
moved the bbcode parser, session handling and search
functions into classes. The remaining removals are due to
functionality modifications and architectural changes. For
example, in phpBB, the database upgrade module was entirely
rewritten resulting in the removal of numerous functions.

Figure 5. Survival functions regarding function removal and method
additions. Left vertical axis represents the value of the survival function, right
vertical axis represents the percentage of method additions and horizontal axis
the consecutive versions.

PhpMyAdmin, WordPress and Drupal do not exhibit a
single hotspot but function removals are distributed over
almost all major releases. Concentrated additions of class
methods in major releases occurred only in PhpMyAdmin and
WordPress. As already mentioned, Drupal adopted object
orientation in version 7.0 and since that version only a limited
number of classes have been added while no functions have
been removed thereafter. So in Drupal only internal
functionality improvements via function rewrites is the source
of function removals in all versions, but version 7.0. In that
version, their database layer was completely replaced by a
new object oriented database layer, substituting 70 functions
with over 450 class methods.

Despite the continuous additions of class methods in
Wordpress, after manual inspection we found that only in
version 2.8 there was a migration to object orientation, where
the majority of the removed functions have been replaced with
class methods that have the same functionality. As in Drupal,
in the rest of the cases where function removal is high, the
reason is the rewriting of the same functionality employing the
procedural paradigm.

In phpMyAdmin there are two versions with a higher
change in the survival function, versions 4.0.0 and 4.1.0,
indicating that major changes took place. A manual review of
the source code confirmed our speculation. In version 4.0.0
267 functions have been removed, of which 76% were moved
to classes. For example, the transformations module, auth
module and export module were rewritten as object oriented
plug-ins. A set of 77 utility functions (common.lib.php) were
packed to a class (Util.class.php) and similarly a set of
functions used to display query results were packed to a class
(DisplayResults.class.php). In version 4.1.0 rewriting in the
same manner took place. Functions in the same context were
packed to classes, as for example, validation functions which
were moved to a Validator class and database interface
functions which were moved to the DatabaseInterface class.
Finally, a large set of functions implementing the dbi
(DataBaseInterface) library have been refactored to classes.
Cumulatively, 77% of the removed functions migrated to
classes.

An observation made during the inspection of the source
code is that a number of functions reported as removed were
renamed due to the change of coding standards. The initial
naming convention for function names was that names should
be snake case21 following PHP's conventions, but the late
trend, as also proposed in PSR-122 standard, in PHP is camel
case23, so the developers changed the project's coding standard
applying camel case to function and method names.

To summarize, three of the five projects are gradually
migrating their functions to class methods, and thus function
removal is justified by this fact. The other two projects,
Drupal and Wordpress, are employing object orientation for
the implementation of new features and removed functions are
replaced with new function implementations. One possible
interpretation is the plethora of user contributed plug-ins and
themes to Drupal and Wordpress and as a result, breaking
compatibility is not an option. At the time of writing,
Wordpress' download site contained almost 30,000 plug-ins
and more than 2,000 themes. For Drupal, there are more than
8,000 modules and almost 600 themes. Most of them are user
contributed and distributed under an open source license.

C. Library usage
PHP is a rather new programming language and according

to TIOBE24 has gained popularity during the last decade. An
indirect indication of maturity for a given programming
language is the development of third party libraries and the
employment of them in other projects. In three out of the five
projects in our study we have observed a strong trend in using
such libraries. As Tulach [19] observes, the trend in modern
software development is the use of such pre-made building
blocks in order to ease and speed up the development of
applications. As we have shown, a side effect is the
introduction of unused code blocks, due to the scripting nature
of the language. However, the fact that the library's source
code becomes part of the system's source code, enables us to
measure the ratio of library code over system code, something
that is not straightforward with compiled languages.

In Figure 6 the plots show the used library code over the
system code of each application (please note that the y-axis
range is not the same across all projects). PhpBB and Drupal
appear to employ a limited portion of third party libraries in
their code (less than 2% and 6%, respectively). Although there
are add-ons for these systems that use libraries, the core
project seems to be free of third party library code. Drupal
gradually replaced any third party libraries with in-house code
trying to build its own ecosystem and moving from being just
a CMS to be a CMF (Content Management Framework)
providing all required components. This strategy of
development allowed all code to be delivered under a single
license, since some of the initial libraries were published
under different licenses. PhpBB on the other hand in an effort
to address user feature requests as quickly as possible and with
a developer community that is not as active as Drupal's,

21 http://en.wikipedia.org/wiki/Snake_case
22 http://www.php-fig.org/psr/psr-1/
23 http://en.wikipedia.org/wiki/CamelCase
24 http://www.tiobe.com/index.php/content/paperinfo/tpci/PHP.html

Figure 6 Used Library code over system code

started employing third party libraries at a very slow pace.
However, it is worth observing that the trend is increasing.

The other three systems are gradually introducing library
code (the percentage of library code is significantly larger).
An exceptional case is phpMyAdmin where for a small period
the library code was equal to system code. In this project,
developers updated in version 3.3.0 the TCPDF library to its
latest version and added PHPExcel25 library to support import
and export functionality from Microsoft Excel files. PHPExcel
is a vast and complete library that gained quickly the respect
of the community. Those two additions exploded the ratio to
1. But in version 3.4.5 the developers eliminated Excel files
import/export support and removed the PHPExcel library. The
removal of such a huge library dropped the ratio to 0.2.

By observing the variations and the extent of library usage
(but also the reason of not using them in some cases) makes
evident that developers of PHP applications are systematically
updating their projects. In other words, maintenance of these
systems is not simply restricted to additions of functionality in
order to address clients' requests, but includes major
architectural decisions such as the choice to rely on a
particular library or not.

D. Interface stability
The stability of an interface can be characterized by the

number and types of changes to the functions' signatures.
According to the strict PHP definition, a function signature is
only the name of the function, but this does not reflect the
interface correctly, since no parameters are included. To track
interface changes in more detail, we have also considered the
mandatory and optional function parameters as well as the
default values of the optional parameters. We classified the
possible changes to six categories as shown in Table III.

For each version of the examined systems we have
computed the ratio of changes over the total number of
signatures, differentiating between the six cases shown in
Table III. Next, we computed the mean of all versions for each
project and the results are summarized in Table IV. The values
for cases C1 to C5 are extremely low, considering the almost
ten years of evolution for each project. This fact implies that
development teams have paid attention in order not to break
backward compatibility and that the corresponding APIs are
mature. Changes of the 6th type exhibit a mean ranging from

25 https://phpexcel.codeplex.com/

3.75% for phpMyAdmin, to 14.22% for phpBB, providing
further support to the aforementioned claim, since despite the
implementation changes for a number of functions, the
corresponding signatures remained stable.

TABLE III. CHANGE CASES OF FUNCTION SIGNATURES
 Category Impact Severity
C1 Change of mandatory

parameters
Breaking function's
compatibility, i.e. client has to
refactor function invocation

C2 Addition of optional
parameters

Possible extension of
function's functionality or
enhanced detail in their
results. No impact on
compatibility, i.e. existing
clients do not have to be
adapted

C3 Removal of optional
parameters

Possible breaking of
function's compatibility:
issues to calls that used the
removed optional parameters

C4 Change of default
values

Possible breaking of
function's compatibility:
issues to calls that expected a
different value.

C5 Change of function's
return type
(identified by PHP
annotations)

Possible breaking of
function's compatibility:
issues to calls that expect
different return type.

C6 Change of function's
implementation.

No impact on interface
compatibility but a factor that
shows interface stability since
developers pay attention when
evolving a function to keep
their interface intact.

TABLE IV. RATIO OF CHANGES IN FUNCTION SIGNATURES
Project C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%)
Drupal 0.15 0.08 0.03 0.09 0.16 6.02
WordPress 0.06 0.16 0.03 0.27 0.42 6.70
phpBB 0.14 0.35 0.02 3.19 0.97 14.22
MantisBt 0.04 0.11 0.00 0.46 0.50 6.65
phpMyAdmin 0.09 0.09 0.02 0.70 1.26 3.75

E. Classes invasion
Object orientation in PHP was fully supported in version

5.3, but it was partially supported and used few years before
that, staring in early 4.x versions. So there was a period where
procedural systems could migrate code to classes.

In Figure 7 we present the ratio of the number of methods
over the total number of functions and class methods of the
system code, excluding third party libraries to show the trend
of converting the core codebase of the systems to classes. We
observe that Drupal after a long period of denial to the object
oriented paradigm, even eliminating the small fraction of
classes that existed in the early versions, made a turn in
version 7.0 with the introduction of classes. The project with
the major change to its coding paradigm is phpBB, where in
version 3.0.0 that was a milestone in the project's history, it
massively adopted object orientation. WordPress keeps it's
slow but steady trend to object orientation, but the huge user
contributed code in plug-ins and themes keeps the
development team from making major rewrites to the public
API of the application. Instead, the developers gradually
perform refactoring applications to the internals of the system

without breaking backward compatibility. On the other hand,
phpMyAdmin that is a widely used project, found in almost
any Linux powered web server, has a powerful momentum
towards being a fully object oriented system. This is due to the
minimal number of user plug-ins or themes, entailing no threat
for breaking the public API of the application.

Figure 7 Methods ratio over total number of functions and methods

Our conclusion is that migrating applications from
procedural to the object oriented paradigm is not only a matter
of developers' will or implementation language, but if the
project can afford the cost of breaking backward compatibility
imposing significant issues to their clients.

F. Evolution of Complexity
To complement our study with a rather traditional

measure, we computed McCabe's cyclomatic complexity
(CCN), thereby investigating if PHP practitioners implement
comprehensible and thus maintainable code. We calculated
CCN per function and then obtained the average CCN of all
functions for each version. To make results more readable we
categorized the functions according to their CCN in three
ranges. A value of 10 is usually considered as a critical
threshold [3], [4]. To enable a more fine-grained classification
and to comply with critical levels identified by various quality
assessment tools, we considered a second threshold at the
value of 5. As a result, values in the range [0..5) imply
excellent readability, [5-10) medium complexity but still
readable code and values higher than 10, code that should be
examined closely. Next, we calculated the percentage of
functions belonging to each range. The percentages over time
are almost constant for all five projects as shown in Figure 8.

Figure 8 Evolution of functions in three complexity ranges over time

The percentage of functions in the high complexity class
remains almost the same across all versions and is relatively
low, suggesting that new code added to the projects does not
contribute to quality degradation. The resulting conclusion
regarding this aspect of software quality, is that the examined
projects are developed properly leading to maintainable code.

G. Overview of findings
To facilitate the interpretation of the results, an overview

of the investigated phenomena, the employed unit of analysis
and the conclusions derived based on the findings for each
project is provided in Table V. A ‘✔’ marking implies that the
derived conclusion can be considered as validated for the
corresponding project, while a ‘×’ mark implies that the
conclusion is not validated. (‘N/A’ for the claim that classes
introduce more unused code than functions has been used for
two projects that had a very limited number of classes).

V. THREATS TO VALIDITY
As already mentioned, one important threat to the

construct validity of our study is the presence of stealth calls,
i.e. functions/methods which are identified as unused, despite
the fact that there are actually invocations on them. According
to Wohlin et al. [20], construct validity reflects the extent by
which the phenomenon under study really represents what is
investigated. Although it is not possible to estimate the extent
of stealth calls in the examined systems, this threat is partially
mitigated since the analysis is evolutionary and thus changes
in the observed phenomena and trends are relative, partially
factoring out the effect of unidentified function invocations.

Another threat of the same type pertaining to the applied
survival analysis is related to the consideration that once
functions become unused they remain unused for the rest of
the evolution. Obviously, one function might become unused
and then be invoked again in a subsequent version or even
might become unused in the future again and so on. This
threat is mitigated by the choice to consider the survival
function rather than the cumulative survival estimator which
would overstress the impact of unused functions.

Since the analysis is based on results from 5 web
applications, threats to external validity are present limiting
the ability to generalize our findings. Moreover, the fact that
the examined applications are large, widely known and
heavily used applications, implies that the development
practices in these projects might differ from other, less
professionally developed systems. However, since the goal
was to investigate whether development with scripting
languages can comply with the proper practices laid out by
software engineering, the authors believe that the examined
systems are representative of multi-version, multi-person
projects in Web applications addressing the needs of a vast
community of clients.

VI. RELATED WORK
Software evolution is one of the most studied areas in software
engineering originating to the 1970’s when M. Lehman laid
down the first principles of software evolution [7] which
gradually evolved to eight laws. The validity of Lehman’s

TABLE V. OVERVIEW OF FINDINGS FOR ALL EXAMINED PHENOMENA

 Validation on Projects

Ph
en

om
en

on

U
ni

t o
f

A
na

ly
si

s

C
on

cl
us

io
n

ph
pB

B

ph
pM

yA
dm

in

D
ru

pa
l

W
or

dP
re

ss

M
an

tis
B

t

A. Survival
regarding
function
usage

Survival
function
(term. event
fan-in=0)

The main
source of
unused
code is
library
usage.

× ✔ × ✔ ✔

 Classes

introduce
more
unused
code than
functions

N/A ✔ N/A ✔ ✔

 Unused

code
appears
in major
versions

✔ ✔ ✔ ✔ ✔

B. Survival
regarding
function
removal

Survival
function
(term. event
function
deletion)

Function
removal
appears
in major
versions

✔ ✔ ✔ ✔ ✔

 Only new
features
are
impleme-
nted with
OO

× × ✔ ✔ ×

 Functio-
nal code
replaced
with OO
code

✔ ✔ × × ✔

C. Library
usage

Percentage
of library
source code
over
project's
own code

Projects
reuse
code
incorpora
ting third
party
libraries

✔ ✔ × ✔ ✔

D. Interface
stability

Percentage
of functions
in each
change
category

Function
interface
remains
stable

✔ ✔ ✔ ✔ ✔

E. Classes
invasion

Percentage
of class
code over
total source
code

Projects
gradually
migrate
to OO
paradigm

✔ ✔ ✔ ✔ ✔

F. Evolution
of
Complexity

Percentage
of modules
in each
complexity
category

Comple-
xity
remains
stable

✔ ✔ ✔ ✔ ✔

Conclusion: The examined PHP applications undergo systematic
maintenance

laws in various contexts has been studied by several
researchers. Recently, Xie et al. [21] studied the software
evolution of seven open source projects implemented in C.

McCabe's CCN and LOC were used to investigate the validity
of the second and the sixth law, respectively. Both laws have
been validated. The findings for PHP projects are in
agreement to these conclusions for C projects.

Survival analysis to estimate aspects of software projects
has been employed by Sentas et al. [17] as a tool to predict the
duration of software projects. In a similar manner, Samoladas
et al. [15] employed the Kaplan-Meier estimator to predict the
duration of open source projects. Scanniello [16] applied the
Kaplan-Meier estimator on Java open source projects, to study
the effect of dead code in the evolution of projects. The results
show that high rates of unused code are detected in most of the
projects in that study.

Regarding the use of libraries, Heinemann et al. [5] studied
the extent of software reuse in Java open source software. The
authors made a distinction between black box and white box
usage which does not apply to scripting languages and in order
to quantify the extent of reuse they measured byte code of jar
files used. They showed that in most cases over 50% of the
code size has its source in third party libraries.

Mockus [11] investigated large-scale code reuse in open
source projects by identifying components that are reused
among several projects. However, Mockus' work quantifies
how often code entities are reused, rather than the actual third
party code. Based on their results, code reuse is a common
practice in open source projects, a fact which is confirmed by
the findings in our study.

VII. CONCLUSIONS
Scripting languages and PHP in particular form the

cornerstone of an increasing number of widely acknowledged
and heavily used web applications. Five such projects have
been analyzed in this paper in an attempt to investigate the
maintenance habits followed by open-source developers
relying on PHP. Several aspects of software evolution have
been investigated, including the presence of unused code, the
removal of functions, the use of third-party libraries, the API
stability, complexity as well as the migration to the object-
oriented paradigm.

The results are conclusive: The examined PHP projects
undergo systematic maintenance driven by targeted design
decisions and PHP does not seem to hinder the adaptive and
perfective maintenance activities. In particular, projects rely
on the use of third-party libraries which in turn introduce
unused code. All systems gradually migrate to the object-
oriented paradigm. Migration to object-orientation in three of
the five projects is performed by replacing functions with
objects, while for two projects only new features are
implemented with classes. The interface of functions remains
strictly stable avoiding compatibility problems with existing
clients. Finally, the complexity of the projects appears to
remain stable, in terms of the percentage of system modules in
distinct complexity levels. All of these findings suggest that
maintenance is performed with care and in a well-organized
manner for the examined PHP applications and significant
lessons can be learned from their evolution history.

ACKNOWLEDGMENT
This research has been co-financed by the European Union

(European Social Fund – ESF) and Greek national funds
through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework
(NSRF) – Research Funding Program: Thalis – Athens
University of Economics and Business - SOFTWARE
ENGINEERING RESEARCH PLATFORM.

REFERENCES
[1] L. Arhippainen, Use and Integration of Third-party Components in

Software Development.
http://www.vtt.fi/inf/pdf/publications/2003/P489.pdf, VTT, 2003.

[2] S. Bedi and P. J. Schroeder, “Observations on the Implementation and
Testing of Scripted Web Applications.,” in WSE, 2004, pp. 20–27.

[3] S. Bergmann and S. Priebsch, Real-World Solutions for Developing
High-Quality PHP Frameworks and Applications. Wiley, 2011.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Company, 1997.

[5] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M.
Irlbeck, “On the Extent and Nature of Software Reuse in Open Source
Java Projects.,” in ICSR, 2011, vol. 6727, pp. 207–222.

[6] E. L. Kaplan and P. Meier, “Nonparametric Estimation from Incomplete
Observations,” J. Am. Stat. Assoc., vol. 53, no. 282, pp. 457–481, 1958.

[7] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proc. IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980.

[8] M. M. Lehman et al., “Metrics and Laws of Software Evolution – The
Nineties View”, in Proceedings of the 4th International Symposium on
Software Metrics, IEEE, 1997, pp. 20-32.

[9] W. C. Lim, “Effects of Reuse on Quality, Productivity, and
Economics.,” IEEE Softw., vol. 11, no. 5, pp. 23–30, 1994.

[10] R. P. Loui, “In Praise of Scripting: Real Programming Pragmatism.,”
IEEE Comput., vol. 41, no. 7, pp. 22–26, 182008 2009.

[11] A. Mockus, “Large-Scale Code Reuse in Open Source Software,” in
Proceedings of the First International Workshop on Emerging Trends in
FLOSS Research and Development, Washington, DC, USA, 2007, p. 7–.

[12] J. K. Ousterhout, “Scripting: Higher Level Programming for the 21st
Century,” Computer, vol. 31, no. 3, pp. 23–30, Mar. 1998.

[13] K. H. Pollock, S. R. Winterstein, C. M. Bunck, and P. D. Curtis,
“Survival analysis in telemetry studies: the staggered entry design,” J.
Wildl. Manag., vol. 53, pp. 7–15, 1989.

[14] L. Prechelt, “Are scripting languages any good? A validation of Perl,
Python, Rexx, and Tcl against C, C++, and Java.,” Adv. Comput., vol.
57, pp. 205–270, 2003.

[15] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on the
duration of open source projects,” Inf. Softw. Technol., vol. 52, no. 9,
pp. 902–922, 2010.

[16] G. Scanniello, “Source code survival with the Kaplan Meier.,” in ICSM,
2011, pp. 524–527.

[17] P. Sentas, L. Angelis, and I. Stamelos, “A statistical framework for
analyzing the duration of software projects.,” Empir. Softw. Eng., vol.
13, no. 2, pp. 147–184, May 2008.

[18] A. Srivastava, “Unreachable Procedures in Object-Oriented
Programming.,” LOPLAS, vol. 1, no. 4, pp. 355–364, 021992 2002.

[19] J. Tulach, Practical API Design: Confessions of a Java Framework
Architect. Apress, 2008.

[20] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering. Springer, 2012.

[21] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of
software evolution: An empirical study on open source software.,” in
ICSM, 2009, pp. 51–60.

