
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Integrating Traceability within the IDE to Prevent

Requirements Documentation Debt

Sofia Charalampidou

University of Groningen

The Netherlands

s.charalampidou@rug.nl

Apostolos Ampatzoglou

University of Groningen

The Netherlands

a.ampatzoglou@rug.nl

Alexander Chatzigeorgiou

University of Macedonia

Thessaloniki, Greece

achat@uom.edu.gr

Nikolaos Tsiridis

Open Technology Services

Thessaloniki, Greece

ntsiridis@gmail.com

Abstract— Documentation issues in software projects have been

recently classified as a type of technical debt (TD), a concept that

expresses how shortcuts during software development result in

additional maintenance and evolution effort. The specific type of

TD is termed documentation debt, and is among the most preva-

lent ones in practice and research. In this study we propose a

tool-based approach for preventing documentation TD during

requirements engineering, by: (a) integrating requirements speci-

fications into the IDE, and (b) enabling the real-time creation of

traces between requirements and code. To this end, we collabo-

rated with a small/medium software company and conducted a

qualitative case study to: (a) analyze the current process and

identify existing TD types, (b) collect the requirements and im-

plement a tool that aims at preventing the accumulation of docu-

mentation TD, and (c) investigate whether the tool successfully

meets its goal. The results of the study suggest that the developers

are motivated to use the developed tool, since they feel that they

can develop, maintain and utilize requirements specifications and

traces as part of their daily routine.

Keywords— requirements, traceability, documentation debt

I. INTRODUCTION

Software projects’ documentation inefficiencies have been re-
cently classified as a type of technical debt (TD) [1], a concept
that expresses how shortcuts during software development re-
sult in additional maintenance and evolution effort [2]. This
type of TD is termed documentation debt and is among the
most prevalent ones in research [1] and industry [3]. In particu-
lar, Alves et al. [1] suggest that documentation TD is among
the top-3 studied types of technical debt in academia, whereas
Ampatzoglou et al. [3] suggest that documentation TD is per-
ceived as the top-4 most important types of TD in industry.

Documentation TD is a broad term that can be identified at
almost all software development phases, in this study we focus
on documentation TD on requirements specifications. We se-
lected to focus on requirement engineering, since it is one of
the most crucial phases in the software development lifecycle,
in the sense that the 9 out of 11 most notable reasons for soft-
ware project failures are related to requirements [4]. As a first
step towards investigating documentation TD in the require-
ments phase, we need to define the possible liabilities that can
be identified in such specifications. Li et al. [5] suggested that
insufficient, incomplete or outdated documentation are the
main sub-types of documentation debt. By focusing on
requirements, these sub-types can be described as follows:

1. Insufficient or incomplete requirements refer to pieces of
specifications (e.g., use cases, user stories, SRS) that are

developed either at low quality or do not describe the sys-
tem under development. Low quality specifications miss
at least one (or more) of the following characteristics:
readability, traceability, verifiability, consistency, etc. [4].

2. Outdated requirements refer to cases in which specifica-
tions have been developed at an appropriate level of quali-
ty (in the early releases of the system), but subsequently
the specifications are not updated with new requirements,
or changes in existing ones [4].

Such documentation inefficiencies can occur intentionally, for
example, in cases of selecting not to apply a rigorous documen-
tation process, or change management strategies; or uninten-
tionally, for cases when documents are not sufficiently main-
tained, due to tight schedule. Both intentional and unintentional
documentation TD hinder maintenance productivity (i.e., incur-
ring TD interest), by adding overheads that stem from com-
promised source code understandability, e.g., difficulty in lo-
cating where each feature is implemented, etc.

In practice, one of the most prominent examples of docu-

mentation TD, related to requirements, is the lack of re-
quirements-to-code traceability. This can be caused by insuffi-
cient and incomplete requirements, which are not linked to the
parts of the source-code where they are implemented. Further-
more, lack of traceability increases the effort of keeping re-
quirements updated, since it is harder to identify which re-
quirements can be affected when the source code is changed.
Consequently, high effort is required to locate features or bugs
within large codebases [6], a fact which impedes maintenance
activities (e.g. feature addition or debugging). However, such
activities are central aspects for TD management (e.g., modules
with low change proneness are not prioritized for TD repay-
ment), in the sense that TD interest occurs only whenever a
change is applied to the system (for more information on the
relation of traceability and maintainability see Section II).

To deal with the aforementioned issues, in this paper we
provide tool-support aiming at the prevention of requirements’
documentation TD1. To achieve this goal, we propose to con-
nect requirements specification and code artifacts, by integrat-
ing the specifications into the programming IDE. For this
study, we worked together with a small/medium enterprise that
is active for 20 years in mobile and web application develop-
ment. The company was interested to reduce the amount of
documentation TD, by adopting the proposed approach and

1 We note that documentation TD should not be confused with requirements

debt, which is a TD type related specifically to requirements and contrasts the

distance between optimal requirements and the requirements that are actually
implemented in the end software [5].

mailto:s.charalampidou@rug.nl
mailto:a.ampatzoglou@rug.nl
mailto:achat@uom.edu.gr
mailto:ntsiridis@gmail.com

tool support. To support the company in preventing the accu-
mulation of documentation TD, we need to achieve 3 sub-
goals: (sg1) understand how the use of the current requirements
specification process incurs documentation TD; (sg2) build a
custom-made tool that integrates requirements specifications
into the programming IDE; (sg3) investigate how the use of the
tool, would benefit the company in preventing the accumula-
tion of documentation TD.

The rest of the paper is organized as follows: first we pre-
sent related work. Second we present the current status of the
requirements specification process of the company; third we
present the case study protocol that was designed to achieve the
stated goals; fourth we present the outcomes of the study orga-
nized by the three aforementioned goals (sg1-sg3), and finally
we present some lessons learned in the form of implications to
practitioners and researchers, as well as threats to validity.

II. RELATED WORK

As direct related work for this study, one should consider
studies that investigate the aspect of documentation technical
debt, and thus could be considered as comparable to our work.
However, after looking into two literature reviews on the do-
main of TD [1, 5], we came up with the conclusion that alt-
hough there are studies referring to the existence of documenta-
tion technical debt as a TD type, there are no studies investigat-
ing specifically this type of TD. In their vast majority, these
studies investigate the TD metaphor from a general perspective,
and thus they combine the investigation of documentation TD
together with other types of TD. Thus, there is no approach
found in the literature that we can directly make a comparison
with. As related work section we can provide only indirect re-
lated work, as follows: In Section II.A, we present a set of stud-
ies that propose alternative traceability management approach-
es, whereas in Section II.B approaches that investigate the ef-
fect of traceability on maintainability (i.e., a proxy of TD). We
note that we will not present studies that focus on demonstrat-
ing or evaluating traceability approaches, even if their goal is to
improve maintainability (e.g. [7], [8]), if they do not provide
empirical evidence on the aforementioned relation.

A. Approaches for Traceability Management

There are various approaches/tools linking requirements to
source code, which can be classified into two major categories:
(a) standalone or web-based that handle source code separately
from requirements (e.g. [9 – 13]), and (b) IDE-integrated that
place requirements and traces inside the IDE used for devel-
opment (e.g. [14 – 17]). We focus on the latter since our case
concerns an IDE-integrated tool that links requirements to
code in real time. Several existing Eclipse-based traceability
tools, e.g. TraceMe [15] and TraceEclipse [14] perform after-
the-fact traceability (although Trace-Eclipse provides also the
possibility to manually create traces between documentation
and source code in real-time, in different levels of granularity).
Additionally, the Capra tool [17] is an eclipse based plug-in
tool, which aims at supporting different tracing needs. For this
reason the types of links to be supported, the types of artifacts
that can be traced and the way the links should be stored are
customizable. However, the proposed tool has not been empir-
ically validated [17]. Finally, a tool proposed by Asuncion et
al [9] allows the creation of end-to-end traces within the whole

process of a company. However, the proposed tool is imple-
mented as a standalone application. A comparison of our ap-
proach compared to state-of-the-art is presented in Table I.
From the table we can observe that: (a) study [9] although tar-
gets real-time traceability management and is well-validated, it
does not explore the IDE integration feature, (b) studies
[14][15] although offer an IDE plugin, they only cover after-
the-fact traceability issues, and (c) study [17] which is poster
paper does not provide any validation at all.

TABLE I. COMPARISON TO RELATED WORK

Study IDE
integration

Real Time Traceability
Management

Empirical
Validation

[14], [15] X X

[17] X X

[9] X X

Our study X X X

B. Effect of Traceability on Maintenance

Mäder and Egyed [5], conducted a controlled experiment
that aims at investigating the effect of requirements to code
traces on maintenance tasks. Initially they examined if the
subjects’ performance (in terms of time and correctness) was
improved during the software maintenance tasks, and then
they investigated the differences due to a range of other crite-
ria (i.e. the kind of tasks subjects solved, the different project
domains, and the order in which a task was performed by a
subject). The results indicated a beneficial effect of traceability
on maintenance quality. Jaber et al. [18], performed also a
controlled experiment investigating the benefits of having
traces among different types of software artifacts in the
maintenance phase. For the needs of the study the authors cre-
ated a prototype tool (TraceLink), which creates a model of all
stored traces among artifacts. The study has three major goals.
First, to investigate whether traceability links affect the accu-
racy of maintenance tasks, second to identify potential benefit
in terms of time reduction when performing a maintenance
task, and third to examine whether developers’ abilities do not
affect task accuracy, difficulty, or speed. The results showed
that task accuracy improves when traceability links exist.
However, no significant results were drawn about the time
improvement. Bianchi et al [19], conducted an exploratory
case study to analyse the role of different types of traceability
models in software maintenance. The study evaluates the de-
gree of granularity that is more effective in modelling tracea-
bility. Two maintenance effectiveness aspects were taken into
account: efficiency, and accuracy. The results of the study
suggest that when a fine-grained trace is used (i.e., methods or
attribute level), the effort required to satisfy a maintenance
request is greater, but so is the accuracy of the modifications.
Therefore, there is a trade-off between the efficiency and the
accuracy of the maintenance task. Finally, Neumüller and
Grünbacher [20] introduced traceability in a small company
and developed a traceability environment for their needs. In
their study they discuss the traceability approach they used and
report on key lessons learned. The approach is fairly simple
establishing trace links based on already existing conventions
for developers. The tool focuses on trace utilization by provid-
ing attractive visualization and query mechanisms, without
complex automations or interfering with the development
practices. The lessons learned concern the way of introducing
traceability into a company rather than the user experiences.

III. CURRENT REQUIREMENTS SPECIFICATION PROCESS

During this study we performed an exploratory case study,
with our industrial partner, named Open Technologies Ser-
vices (OTS). OTS is a small/medium scale company that is
considered one of the key-players in Greece’s mobile and web
development market. For the needs of this study we selected
eight participants (six developers, the quality assurance man-
ager and the project manager) that were involved at different
phases of the study. The experience of the participants ranged
from one year (junior developers) to approximately a decade
in the company (project manager). In this section, we present
the current status of the requirements specification process of
our industrial partner, organized based on: (a) the involved
stakeholders, and (b) the current approach and the used tools.
Stakeholders: The stakeholders are both technical and non-
technical, from different departments of the company. The
main role dealing with specifying and managing requirements
is developers, who are interested in tracing the requirements
they receive (documented in the form of JIRA issues), into the
implementation of the system (i.e. in the source code). Devel-
opers are interested in retaining the requirements as close to
the source code as possible, so as to minimize the overheads of
their management (e.g., not use tools other than their IDE,
neither for documenting requirements, nor for maintaining
traces). Other stakeholders in the development team include:
the quality assurance manager, who is interested in knowing
which requirements are implemented and which parts of the
code should be tested; and the project manager, who is inter-
ested in communicating the progress of the development team
to customers or higher management, and thus is concerned
with the understandability of documentation by non-technical
stakeholders (e.g., the customer support centre, which is re-
sponsible for reporting a large portion of issues).
Current Approach and Tools: Currently the company does not
follow a strict requirements specification process (mostly due
to tight development schedule) and there are no means of ex-
plicit traceability between software artifacts. According to the
descriptions of the stakeholders, the requirements of a project
are basically documented by the developers as JIRA issues, in
the form of user stories (US). Once a user story is implement-
ed, the corresponding code is committed to Git. The linking
between the source code artifacts that implement a specific
user story is performed when committing the code to Git, by
using the JIRA issue ID in the commit comments. According
to the project manager, flexibility and efficiency of this pro-
cess are its positive characteristics, since developers do not
like to spend time in documenting unnecessary information.
Since in the current process the developers specify the re-
quirements themselves, they have control over their tasks, and
usually they just write enough details to start writing code.
However this approach has as downside the unintentional crea-
tion of TD, since due to time limitations developers do not
document requirements properly (e.g., user stories are not up-
dated for minor changes, textual requirements are not detailed
enough to fully specify the requested functionality, etc.), and
this results to bad documentation, which affects the under-
standability of others in the team, or even the understandabil-
ity of the code owner in the future.

The created traces are utilized along maintenance activities
(e.g., bug fixes or new feature requests). However, the current

process is based in many cases on oral communication. When
a specific code artifact needs to be maintained, the person that
wrote the code is the first one to be asked. If this is not possi-
ble, developers look for the class that needs to be updated by
applying a full text search, and navigate based on the com-
ments existing in the source code (when applicable). To get an
insight on a specific part of the code, the commits that
changed the respective code are tracked and manually re-
viewed. Upon successful completion of the maintenance task,
developers are expected to signify other requirements that
need to be tested, due to potential overlaps in the source code
artifacts implementing these requirements. The link to re-
quirements is done by creating a new JIRA issue, which refer-
ences the issue ID that initiated the need of the check. Howev-
er, the current process offers no guidance on identifying such
overlapping requirements.

IV. CASE STUDY DESIGN

The goal of this case study is: (a) to analyse the currently used
requirements specification process regarding how it incurs
documentation TD (i.e. insufficient, incomplete or outdated
requirements specifications); (b) to propose a tool for prevent-
ing the accumulation of such documentation TD; (c) to inves-
tigate to what extent the proposed tool achieves its goal. The
case study was designed and is reported following the guide-
lines provided by Runeson et al. [21]. Based on the sub-goals
defined in the introduction, we have derived three research
questions (RQ):

RQ1: What aspects of the current requirements specification
process are prone to incur documentation TD?

To answer this research question, different steps of the current
requirements specification process are discussed with the in-
volved stakeholders to understand how and why they poten-
tially incur documentation TD. Such steps will be linked to
specific types of documentation TD (i.e. insufficient / incom-
plete / outdated requirements).

RQ2: What type of tool would be helpful in preventing the
accumulation of documentation TD?

In this research question we explore the main requirements (of
our industrial partner) on building a requirements specification
tool with the aim of preventing the accumulation of TD. We
aim at collecting a set of functional and non-functional re-
quirements, describing the ideal requirements specification
system according to the company stakeholders. As a starting
point for discussing the requirements for the developed tool,
the TD-prone aspects of the process identified in RQ1 will be
used. As part of the answer to this research question, we will
present the developed tool, and discuss how we evaluated its
functional and non-functional behavior. The ability of the tool
to aid in preventing documentation TD accumulation is inves-
tigated in RQ3.

RQ3: How does the developed requirements specification
tool aid in the prevention of accumulating documenta-
tion TD?

In this research question we explore whether the developed
tool can help stakeholders prevent the accumulation of docu-
mentation TD during the requirements specification, and the
extent to which maintenance effort is reduced. Apart from the
expert opinion of the stakeholders, in this research question we

will focus on the rationale of the opinions, explaining how the
tool can actually aid in technical debt prevention.

For the needs of our study we collected qualitative data
through different collection methods (see Table II) which are
further discussed below. For all research questions, triangula-
tion of data sources or collection methods (two per research
question) has been achieved, to mitigate data collection bias.

TABLE II. DATA COLLECTION METHODS PER RESEACH QUESTION

Collection method RQ1 RQ2 RQ3

Pre-tool interviews X

Observation session X X

Focus group (Requirements elicitation) X

Focus group (Discussion on prototypes) X

Post-tool interviews X

In the first part of our study (RQ1) we conducted three in-
dividual interviews with a developer, the quality assurance
manager and the project manager. In order to enhance the reli-
ability aspect, all conducted interviews followed interview
guides, which had been tested through a pilot case study (the

study guides, and the developed tool are all available online2).

These interviews aimed at giving us some insight on how the
current state-of-practice results in the creation of different
types of documentation TD. The identified documentation TD
types acted as pointers for the development of the tool. As
additional means of collecting data, we performed an observa-
tion session, aiming at collecting information about steps of
the process or actions that might have been omitted during the
interviews. The outcome of RQ1 indicates the parts of re-
quirements specification that result in documentation TD; and
therefore are in need of tool support.

The extraction of the requirements for the developed tool
(RQ2) was performed through two focus group sessions (which
were structured according to the guidelines of Kontio et al.
[22]). During the planning of the focus groups we defined the
goals. The first focus group aimed at collecting a set of initial
requirements, focusing mostly on functional requirements. The
second one aimed at finalizing the requirements elicitation
process and collecting non-functional requirements. The two
focus groups had a similar design. They both lasted for 45’
and the participants were company stakeholders, with different
fields of expertize and backgrounds. While conducting the
first focus group a list of candidate requirements from litera-
ture and other existing systems were used for driving the dis-
cussion. During the second focus group a set of mock-up pro-
totypes were used for the same purpose. The two focus groups
were performed with a time difference of one month, so that to
process the results of the first focus group, before designing
the mock-up prototypes. Subsequently we developed the re-
quested tool. To evaluate the conformance to the needs of the
company we examined, through interviews and observation
sessions, how five developers experience the use of the tool, in
terms of both the functional and non-functional requirements.
Finally, after one month that the tool development was stabi-
lized, we evaluated the effect of using the tool for preventing
the accumulation of documentation TD (RQ3). To do so, we
conducted five post-tool usage interviews with developers who
had used the tool, during which we discussed how the use of

2 http://www.cs.rug.nl/search/Resources/Resources

the tool affected the maintenance effort required to resolve
future tickets, and the extent to which it affects the accumula-
tion of technical debt, related to the requirement documenta-
tion TD types (as identified in RQ1). For similar reasons to
RQ1, we performed post-tool observation sessions as well. The
outcome of this process was the rationale of experts, explain-
ing why the tool is beneficial in terms of TD prevention.

V. RESULTS

In this section we present the results obtained by analyzing the
data from the interviews, focus groups and observation ses-
sions. The collected dataset for all research questions was ana-
lyzed using the constant comparison technique, which is a
systematic way for analyzing qualitative data [23]. Specifical-
ly, we transcribed all interview and focus group audio files,
and we compiled them into a data set, including also the notes
kept during the observation sessions. Then we coded the data
set, i.e. categorized all pieces of text that were relevant to a
particular theme of interest [23], and we grouped together sim-
ilar codes, creating higher-level categories (see Table III). The
categories were created during the analysis process by both the
first and the second author, and were discussed and grouped
together through an iterative process in daily meetings. In the
upcoming sections, in parenthesis, we use the codes identified
in the textual analysis process. We note that in Table III we
present the answers provided by the respective participants
(i.e. for the first part of the study, the developer (D), the pro-
ject manager (M) and the quality assurance manager (Q) and
for the second part of the study the five developers (partici-
pants 1-5). Additionally, we note that cells with grey color
indicate that the corresponding participants were not involved
in those code categories.

A. Documentation TD in Current Process

In this section we discuss the inefficiencies of the current re-
quirements specification process that lead to the accumulation
of documentation TD. An illustrative case describing this pro-
cess is summarized in Figure 1.
Incomplete and insufficient requirements. The process is
considered to create obstacles in the communication among
departments (e.g., support, development, and testing) (c1).
From the perspective of developers, the main reason is that
when non-technical stakeholders use JIRA to add new issues,
the issue specifications are not formulated as proper user sto-
ries (c2). Similarly, the freedom that developers have while
creating documentation often results to poor documentation
(due to time limitations), which hinders understandability (c2).
As a result, oral communication is required to bridge these
gaps and often ends up driving the process (c3).

Additionally, according to all participants, the current pro-
cess does not support sufficient traceability among software
artifacts (c4). Specifically, there is a lack of a structured way
to link requirements and test cases, or JIRA issues to user sto-
ries. As a result, maintenance activities (bug fix or addition of
features) become more difficult, since it is hard to locate con-
crete artifacts. Thus the task of navigating into the source
code, is perceived as even more complex for the new develop-
ers in the company (c5).

http://www.cs.rug.nl/search/Resources/Resources

TABLE III. MAPPING BETWEEN CATEGORIES AND PARTICIPANTS

Furthermore, all participants agree that one of the biggest chal-
lenges of the current process is that they cannot easily trace
which requirements are already implemented and extract a
feature set (c6). This causes troubles in several ways: (a) there
is inefficiency in project progress tracking; (b) communication
with customers on bug-fixing progress is hindered; and (c) the
testers are not aware of the requirements that need to be tested,
since they are not expected to track commit records for identi-
fying changes. The manager reported that it would be a big
benefit to “be able to see the stories well organized, without
looking into other external systems”.
Outdated requirements. When the documentation of a project
is isolated from the project itself (i.e., use of different tools),
developers do not perceive updating it as part of their respon-
sibility, but as an extra burden for their main tasks (c7). An
additional problem is that in the current process, when devel-
opers deal with a JIRA issue, they do not have access to the
intended functionality as a whole. As a result, they often miss
the context of the user story (c6).

Figure 1: Illustrative presentation of the process

B. Proposed Tool for TD Prevention

How the tool could prevent specification TD: All participants
agree that external tools would not be easily integrated in their
process. Instead, the company needs a tool to document and
trace requirements, integrated into the used IDE (c8). Such an
integration aids in the prevention of accumulating instances of
the documentation TD types discussed in RQ1 (i.e., incom-
plete, insufficient or outdated requirements).
First, it is important that the user can choose how much docu-
mentation is really necessary to understand a user story; there-
fore, the tool should provide flexibility in the level of details
for requirements specifications. This functionality helps in
avoiding over-engineering requirements, but at the same time
assures the existence of a minimal level of details needed to
avoid having insufficiently specified requirements. Further-
more, all participants underlined that the tool should support
communication among stakeholders alleviating existing prob-
lems (c1). For this reason the tool should enable the sharing of
requirements specifications among developers and non-
technical stakeholders (e.g., the product owner and the sales
department), by producing reports that are friendly to non-
technical stakeholders. This is expected to contribute towards
limiting the number of incomplete requirement specifications,
since they will be verified by several stakeholders. Such a ver-
ification, assures the completeness of requirements, from po-
tentially different perspectives. Since non-technical stakehold-
ers may not be willing to use the IDE-based environment of
the tool, the tool should provide as output overview files (c9).
Concerning the creation of links, the tool should provide func-
tionality for connecting requirements to source code (i.e. fol-
lowing a link should open the right method/class where a re-
quirement has been implemented) and vice versa (c10). This
requirement is expected to alleviate the accumulation of TD
due to lack-of-requirements-to-code traceability.

Category

Participants

D M Q 1 2 3 4 5

(c1) Communication difficulties among stakeholders + +

(c2) Insufficient/incomplete US documentation affects understandability + + +

(c3) Oral based communication with documentation of basic decisions + + +

(c4) There are traces among limited artifacts + +

(c5) Traces support understandability of developers + + +

(c6) Need of system overviews (FR, test cases etc.) + + +

(c7) Isolated documentation hinders maintainability + + +

(c8) Use of an IDE based traceability tool + + +

(c9) Non-technical stakeholders can suffice with an output document + + +

(c10) Capability to link US to code and vice versa + + +

(c11) Flexibility and efficiency are major benefits + + +

(c12) Links’ granularity should be at least at class level +

(c13) Requirements management via tree structure + + + + + + +

(c14) Search functionality for requirements or code + + + + +

(c15) Users have different interaction preferences + + + + + +

(c16) Integration with Git + + + + +

(c17) Low consumption of resources + + + +

(c18) Low response time + + + + + +

(c19) Scalability is important + + +

(c20) There is no strict traceability process + + +

Second, all participants consider that a tool that should be easy
to use, so as to be easily adopted into the workflow of the de-
velopers (c11)—promoting the update of requirements speci-
fications (i.e., preventing the accumulation of additional out-
dated requirements TD). In terms of source code, the linking
should be done at least at class level, while according to a par-
ticipant creating traces at method level could also potentially
be useful (c12). Additionally, in the tool it should be possible
to link many requirements to one class, and vice versa (c10).
In addition to TD prevention the tool should obey to generic
guidelines of requirements specification processes. In particu-
lar, the imposed requirements specification should capture the
goal and the reasoning for each user story, and keep infor-
mation about the system/subsystem the story belongs to, the
responsible actor and the respective test scenarios. The user
stories should be visualized in a tree structure, and should be
organized in smaller categories, based on the subsystems or
actors they refer to (c13). What is more, most participants
name the search functionality as a basic one (c14). Specifical-
ly the user should be able to search for a concrete requirement
by providing a term, or by choosing an actor or a subsystem
and the system should identify the classes in which this re-
quirement is implemented, and vice versa. This would reduce
the time required for locating the part of the system where
changes will be made.
To guarantee that stakeholders will use the tool in a regular
basis, a set of four non-functional requirements (namely: usa-
bility, interoperability, performance, and scalability) have
been identified by the participants, acting as key drivers for the
development of an ideal requirements specification manage-
ment tool. In particular usability should be the major point of
attention: most participants stated that one of the biggest chal-
lenges is to have a usable tool for all developers, due to the
different preferences and habits that each one has (e.g., use the
tool either by mouse or code annotations) (c15). Interoperabil-
ity is another aspect discussed at several points by most partic-
ipants, namely how the tool integrates with other tools and
environments used by the company—e.g. Git and Eclipse
(c16). In terms of performance (i.e. the response time and the
resources used by the system when initializing the traces be-
tween user stories and source code) it was stated that “loading
a project should not consume much resources” (c17) and that
“the tool would prevent us from using it only if it had serious
issues, like delays” (c18). Finally, the participants mentioned
the importance of scalability (c19), since the project sizes
vary, and grow over time, and thus the tool should be able to
handle an increased number of user stories or classes.

Figure 2: Illustrative example of the core tool functionality

Developed Tool: Based on the aforementioned collected re-
quirements we created an Eclipse plug-in that provides devel-
opers the desired functionalities for managing requirements
specifications. This functionality concerns the specification of
new user stories inside the IDE, and the easy identification of
existing user stories, which can be traced to the code, where
they are implemented. Thus, when a new maintenance ticket
arrives, the developer can effortless reach the respective user
story and update the source code that implements it.
The interface of the core functionalities of the developed
Eclipse plug-in is presented in Figure 3, in order to provide the
reader with an idea about the look and feel of the tool. The tool
was validated through interviews and observations and the
results were positive, since all users were able to use it for the
assigned tasks (functional requirements) accurately and timely.
This finding can be considered as expected since the tool has
been developed based on the needs and processes of our indus-
trial partner. However, the evaluation process suggested that
the quality characteristic that still needs improvements is usa-
bility. This is not surprising, as usability is the most subjective
of these qualities, and thus hard to satisfy for all stakeholders.

C. Effectiveness of the Tool

In this section we discuss the obtained benefits by the use of
the tool, in terms of preventing documentation TD. The bene-
fits with respect to prevention of accumulating TD are orga-
nized per documentation TD type.
The developed tool provides a simple and efficient way to
integrate requirements specifications inside the IDE environ-
ment. According to the project manager connecting require-
ments documentation with the source code is “the biggest ben-
efit” of the new process (c8). In this set up developers tend to
perceive specifications maintenance as part of their job and not
as something external. This is a great achievement in terms of
preventing outdated documentation. The IDE-integration im-
poses the use of the tool in the daily routine of the developers
in a very natural way, and thus developers are willing to use it.
In terms of how the tool can affect the future maintenance of
the specifications, the project manager stated that “it is much
easier for developers to maintain the stories, because it’s in
the IDE, so developers do not have to maintain data in differ-
ent tools. It’s not a large effort. It is very interesting to see
how using an independent tool and using a tool that is close to
the code affect the use from the developers” (c7). At the same
time, the tool maintains the advantage of flexibility (c11), i.e.
developers do not need to spend much time on documentation
(avoiding over-engineering), but they can document just-
enough and just-in-time to clearly specify the given require-
ment just before starting its implementation. The threat of ac-
cumulating TD related to requirements insufficiently or in-
completely specified is mitigated by sharing the specifications
with technical- or non-technical stakeholders, who can poten-
tially ask for clarifications or additions. Finally, the introduc-
tion of the tool in the daily routine of developers provided
them a systematic way to capture traces between requirements
and source code, an aspect that was completely absent before
the development of the tool (c20). Thus, intermediate solutions
like commenting on commit records, or commenting in the
source code have been successfully substituted with a more
efficient and comprehensive solution, preventing the accumu-
lation of TD due to lack of requirements-to-code traceability.

 Figure 3: Screenshots showing the interface for the basic functionality of the developed tool

VI. LESSONS LEARNED

The results of our study confirmed the existence of technical
debt at the requirements specification level, in the sense that
all types of documentation TD have been identified by the
stakeholders. This finding can be considered as expected, since
in literature, industrial studies suggest that documentation TD
is among the most common forms of TD [2]. In addition to
that, we explored which aspects of requirements specification
process are more prone to produce TD. The results suggested
that TD is accumulated on artifacts for which communication
among many stakeholders is required, or on those specified in
different documents. Both aforementioned findings can be
considered intuitive since: (a) communication between stake-
holders can cause understandability issues and inconsistencies;
(b) documentation in multiple documents is very time-
consuming and may lead to omissions in specification.

As a possible solution to these issues the stakeholders have
promoted the integration of requirements specification in the
IDE, rendering developers as responsible for their update and
maintenance. The provided solution has been well-accepted by
developers, who considered it as a viable way to prevent the
accumulation of further TD. The eager adoption of the tool by
developers is intuitive; the documentation maintenance can be
done inside the IDE and thus it feels as part of their daily rou-
tines, considering the extra burden as negligible. Additionally,
the reduction of TD is expected to reduce the required mainte-
nance effort, as well. In particular, the participants of the study
expect that this change will make the maintenance of the soft-
ware easier (and less costly) since the time required for identi-
fying the affected parts of the code will be reduced. This bene-
fit stems from the exploitation of requirements to code traces.
The introduction of traceability management into the process
of the company, through the creation of links between the re-
quirements specifications and the place in the source code
where they are implemented has a great effect in terms of un-

derstandability of the code. Thus, any maintenance action (i.e.,
bug-fixing or feature addition) would be less effort intensive,
since developers would not need to invest time on identifying
the parts of the code where the user story resides in. The bene-
fits of using the tool are expected to be stronger for novices.

Based on the aforementioned findings, we identified some
implications for practitioners and researchers. First, a re-
quirements specification tool, which is integrated in the IDE
and also promotes requirements-to-code traceability, can sup-
port the creation and maintenance of well-defined user stories,
and can increase the understandability of the project especially
to new developers. Thus, we suggest practitioners to use a tool
for managing requirements specifications and traces according
to their specific needs. In particular, given the positive evalua-
tion of the proposed plug-in, we suggest practitioners that al-
ready use Eclipse and document their requirements as user
stories to adopt the proposed plug-in1. From a research point
of view the current study can be followed up with a longitudi-
nal, quantitative case study to collect empirical evidence on
the benefits of the long-term use of the developed tool in the
company. Additionally, a replication in the context of a differ-
ent company would be useful, so as to check the generalizabil-
ity of our findings in different processes.

VII. THREATS TO VALIDITY

Potential threats to validity of the conducted study concern
construct, external, and internal validity and reliability threats.
Since the goal of the study is not to establish a causal relation-
ship between the use of the tool and the prevention of TD, but
only to provide an initial exploration, we believe that internal
validity is not a main concern for this study’s validity. Con-
struct validity reflects to what extent the phenomenon under
study really represents what is investigated according to the
research questions [21]. To mitigate construct validity threats,
we established a research protocol to guide the case study,

Manage actors that are available in

the system (CRUD operations)

Actors are connected to

User Stories
List of available US per

sub-system

A textual description of the

User Story

Code artifacts (methods and

classes) linked to the US

Search results

Search based on actor,

name, and US description

which was thoroughly reviewed by two experienced research-
ers in the domain of empirical studies. Additionally, during the
data collection process we aimed at data and method triangula-
tion to avoid a wrong interpretation of a single data source.
One could argue that the decision to involve two different sets
of participants, one for extracting requirements and one for
evaluating the developed tool could be a threat in terms of
construct validity. However, we believe that participation of
experienced stakeholders in different roles during the elicita-
tion process provides a more global view of the needs of the
company, while the evaluation by various developers using the
tool in a daily basis helps to mitigate bias. Another threat is the
fact that the use of the tool was performed in the company for
a small time period (one month) before the post-use case
study. However, we believe that this timeframe was adequate
for the software engineers to perform an initial validation.

In terms of external validity (i.e., threats concerning the
generalizability of the findings derived from the sample [21]),
it is difficult to claim that the same results would be derived in
other companies. However, emphasizing on analytical general-
ization we can report on mitigation actions, which allow us to
argue that the findings are representative for other cases with
common characteristics. Specifically, the participants of the
study were professional software engineers with varying years
of experience in software development. Additionally, OTS is
an established SME in the domain of mobile and web devel-
opment; therefore we can argue that the studied units are rep-
resentative for similar companies in the same domain.

The reliability of the case study concerns the trustworthi-
ness of the collected data and the analysis performed, to ensure
that same results can be reproduced [21]. We support the reli-
ability of our study by creating a rigor case study protocol and
interview guides, which were tested through a pilots. To min-
imize potential reliability threats during the data collection
process, we preferred to ask open-ended questions and we
requested motivation for the provided answers. To assure the
correct and unbiased data analysis, two researchers collaborat-
ed during the whole analysis phase. Finally, we have archived
internally (due to a non-disclosure agreement with our indus-
trial partner) all collected data both raw and coded, so that the
analysis can be verified and traced: interview and focus group
guidelines are openly available.

VIII. CONCLUSIONS

One of the reasons resulting to requirements specification TD
is their inconsistent management from different stakeholders,
which usually involves different documents. To alleviate this,
we developed a plugin that integrates requirements specifica-
tion in the Eclipse IDE enabling their tracing to source code.
The main benefit of using the developed plugin is the motiva-
tion of developers to create, maintain and utilize requirements
specifications and traces as part of their daily routine.

ACKNOWLEDGMENT

We would like to thank all study participants, and Theodoros
Kyriazidis and Christos Kotsis for developing the plug-in.

REFERENCES

[1] Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull,
F., and Seaman, C., “Identification and management of technical
debt”, Information on Software Technology, 70, pp. 100-121, 2016.

[2] W. Cunningham. 1992. The WyCash Portfolio Management System. In
Addendum to the Proceedings on Object-oriented Programming
Systems, Languages, and Applications. NY, USA, 29–30.

[3] Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.,
Abrahamsson, P., Martini, A., Zdun, U., and Systa, K., “The Perception
of Technical Debt in the Embedded Systems Domain: An Industrial Case
Study”, 8th International Workshop on Managing Technical Debt (MTD’
2016), IEEE, 2016.

[4] Van Vliet, H., Software Engineering: Principles and Practice, 3rd
edition, John Wiley & Sons, 2008.

[5] Li, Z., Avgeriou, P., and Liang, P., “A systematic mapping study on
technical debt and its management”, Journal of Systems and
Software, 101, pp. 193-220, 2015.

[6] Mäder, P., and Egyed, A., “Do developers benefit from requirements
traceability when evolving and maintaining a software
system?”, Empirical Software Engineering. 20, (2), pp. 413-441, 2015.

[7] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto and A.
Panichella. Enhancing Traceability Management in Eclipse via
Information Retrieval and User Feedback Analysis. 7th Italian
Workshop on Eclipse Technologies, Naples, Italy, 2012. LCNS Press.

[8] M. Shahid and S. Ibrahim, "Change impact analysis with a software
traceability approach to support software maintenance," 2016 13th
International Bhurban Conference on Applied Sciences and Technology
(IBCAST), Islamabad, 2016, pp. 391-396.

[9] H. U. Asuncion, F. Francois, and R. N. Taylor, “An end-to-end industrial
software traceability tool,” 6th ESEC-FSE, 2007, pp. 115–124.

[10] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods.” IEEE
Transactions on Software Engineering, vol. 32, no. 1, pp. 4–19, 2006.

[11] M. Lormans and A. van Deursen, “Can LSI help reconstructing
requirements traceability in design and test?” 10th CSMR, 2006.

[12] A. De Lucia, R. Oliveto, and G. Tortora, “ADAMS Re-Trace:
Traceability link recovery via latent semantic indexing,” in Proc. of 30th
ICSE. , 2008, pp. 839–842.

[13] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford, B.
Berenbach, O. B. Khadra, C. Duan, and X. Zou, “Poirot: A distributed
tool supporting enterprise-wide automated traceability,” in Proc. of 14th
IEEE RE. , 2006, pp. 356–357.

[14] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Traceclipse:an
eclipse plug-in for traceability link recovery and management,” in Proc.
of the 6th TEFSE, 2011, pp. 24–30.

[15] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto and A.
Panichella. TraceME: Traceability Management in Eclipse. 28th
International Conference on Software Maintenance (ICSM 2012) Tool
Demo, Riva del Garda, Italy, 2012. IEEE. pp. 642-645.

[16] A. Marcus, X. Xie, and D. Poshyvanyk, “When and how to visualize
traceability links?”. 3rd international workshop on Traceability in
emerging forms of software engineering (TEFSE '05). ACM, 2005.

[17] S Maro, JP Steghöfer, “Capra: A Configurable and Extendable
Traceability Management Tool”. In IEEE 24th International
Requirements Engineering Conference (RE), 2016, pp. 407-408.

[18] K. Jaber, B. Sharif and C. Liu, "A Study on the Effect of Traceability
Links in Software Maintenance," IEEE Access, pp. 726-741, 2013.

[19] A. Bianchi, A. R. Fasolino and G. Visaggio, "An exploratory case study
of the maintenance effectiveness of traceability models," Program
Comprehension, 2000. Proceedings. IWPC 2000. 8th International
Workshop on, Limerick, 2000, pp. 149-158.

[20] C. Neumuller and P. Grunbacher, "Automating Software Traceability in
Very Small Companies: A Case Study and Lessons Learne," 21st
IEEE/ACM International Conference on Automated Software
Engineering (ASE'06), Tokyo, 2006, pp. 145-156.

[21] Runeson P., Höst M., Rainer A., Regnell B., “Case Study Research in
Software Engineering: Guidelines and Examples”, Wiley & Sons, 2012.

[22] Kontio, J., Bragge, J., Lehtola, L., “The focus group method as an
empirical tool in software engineering”, In: Guide to Advanced
Empirical Software Engineering, Springer-Verlag, pp. 93-116, 2007.

[23] Seaman, C.B., “Qualitative Methods in Empirical Studies of Software
Engineering”, IEEE Transactions on Software Engineering, 25(4), pp.
557–572, IEEE, 1999.

