

INVESTIGATING THE USE OF PATTERNS

IN OPEN-SOURCE GAMES

APOSTOLOS AMPATZOGLOU, ALEXANDER CHATZIGEORGIOU, NIKOLAOS
SAMARAS

Department of Applied Informatics, University of Macedonia

 Egnatia 156, Thessaloniki, Greece
E-mail: ampatzoglou@doai.uom.gr, achat@uom.gr, samaras@uom.gr

Game development is considered to be one of the most profitable fields in the software industry. Since
game production is a very complicated task to accomplish, software engineering techniques could
prove useful for providing maintainability and reusability. This paper investigates to what extent open-
source game developers are familiar with design patterns and apply them in order to improve games’
structure. Additionally, some generic subjects on design patterns are being examined, such as pattern
difficulty and relationships between design patterns of the same family.

Keywords: Games, design patterns, statistical analysis, decision trees, regression analysis

1. INTRODUCTION

It goes without saying that computer game design is one of the most modern and fast
growing trends in computer science (T.M. Rhyne, 2000, pp. 519-521). Until the middle of
90’s, game developers did not aim to produce reusable code since every program has been
written from scratch in assembly language (Rollings, 2003). Later, reusable coding has
proven to be one of the most important issues in game development because games became
far more complex and their production process more time consuming. In order to alleviate this
problem, frameworks and game engines have been created. A framework is a collection of
classes that can be widely reused and integrated with other components (R. Rucker, 2003) and
(L. Valente, 2005). Usually they implement mechanisms that occur in many games, such as
input handling, file handling (texture, models, audio etc), 3D rendering etc. Game engines are
programs that provide developers the potential to design game levels, handle player and
opposition behavior, by using scripting languages and powerful GUIs. As it is easily
understood, if frameworks and game engines are “well-structured”, they can be maintained
without extreme effort and be transformed so that they can fit as many game genres as
possible.

The application of design patterns in systems (C. Alexander, 1977) is a quite popular
software engineering technique. Employing patterns in software design and implementation is
considered to provide code reusability and maintainability (E. Gamma, 1995). The benefits
and drawbacks of the application of patterns in classical programming (not game related) are
discussed in a few papers (L. Prechelt, 2001, pp.1134-1144) and (M. Vokác, 2004, pp. 149-
195). The results of applying design patterns in games, concerning complexity, cohesion,
coupling and size have also been examined (A. Ampatzoglou, 2007, pp 445-454). The results
of the aforementioned research imply that patterns reduce complexity of games, increase
cohesion between methods, reduce coupling but increase the size of the examined games.

This paper aims at investigating whether open-source game developers are familiar
with patterns and if they actually employ them. Furthermore, it examines whether game
developers are familiar with patterns of the same family and design pattern comprehension
difficulty. The results have been obtained through an email survey that was conducted with

questionnaires sent to open-source game programmers. The feedback from the questionnaires
was analyzed with statistical and data mining packages

In the literature there are several efforts concerning statistical analysis on the use of
patterns in classical programming. More specifically, Prechelt in (L. Prechelt, 1997), asked
the programmers participating in an experiment to fill in a questionnaire in order to identify
their background in design patterns. The subjects had an average of 5 years of programming
experience and 91% of them had written more than 3000 Lines Of Code (LOC) in their life.
The most known pattern between them proved to be Iterator and the least known, the Proxy.
Similarly to investigating design patterns for game development, in (J. Borchers, 2002) the
author examined the usefulness of Human-Computer Interaction (HCI) patterns. In his survey
the author asked students to fill in questionnaires, on the completion of a course. The results
suggested that each student remembered an average of 1.73 patterns, rated the usefulness for
learning 1.96 (out of 5), the usefulness for current project 2.23 (out of 5) and the usefulness
for reuse in future projects 1.94 (out of 5).

2. ANALYSIS DESCRIPTION

In order to investigate the target points of our survey, we contacted open-source game
developers by e-mail and asked them to fill in a questionnaire∗. Their addresses were most
commonly found from a wide open-source community (Sourceforge) and from universities
that offer undergraduate or postgraduate courses in game programming. In total, 245 e-mails
have been sent and 29 questionnaires have been received (response rate=11.8%, failure
rate=2.1% (K.L. Manfreda, 2005). The methodology of the survey was based on (K.L.
Manfreda, 2005) that suggested to provide individual invitations to any possible target and to
avoid open-ended questions.

The questionnaire has been divided into two subsections. The first includes
information about the programmer such as experience (in years) in the most common
programming languages and whether he is familiar with some design patterns. The second
section included information about a certain game indicated by the developer. More
specifically, we retrieved information about the dimensionality of the game, the packages
used for 3D graphics, the appearance of design patterns in it and additional information about
the overall belief in the usefulness of patterns. The complete questionnaire led to the
construction of the database. The questionnaire consists of 10 questions from which we
extracted 94 variables. Most of the extracted attributes were either binary or numeric. Some of
those variables are coded into a three category scale.

The attributes extracted from the questionnaires have been analyzed using two
intersecting scientific approaches, statistics and data mining. This kind of analysis is quite
popular in scientific research as shown in (G. Alexe, 2005, pp.322-325), (R.S. Lin, 2006) and
(D.J. Newman, 1998). Both techniques can be combined as follows; statistical tests can be
applied to help analyze the results of a data mining session. Statistical analysis is clearer in its
goal, so it is not easy to face an unexpected result, and the processing includes a beginning
and an ending. On the other hand the purpose of a data mining session is to identify hidden
and potentially useful knowledge from a data set. The knowledge gained is given as a
conceptual generalization of the data set. Hidden knowledge can be mined using supervised
learning and/or unsupervised clustering. Decision or classification trees are one of the most
popular tools for constructing classification models in the software engineering field
(Khoshgoftaar, M.T., 1999) and (Tian, J., 1998, pp. 97-104). Decision trees are induction
techniques used to discover the interactions among predictors that do not exhibit strong
marginal effects (N.R. Cook, 2004, pp.1439-1453). Roughly speaking, this can be achieved
by subdividing the information contained in the data set.

∗ The questionnaire can be found at http://java.uom.gr/~apamp/publications.html

2.1 DATA MINING

As mentioned above data mining techniques are used in this survey in order to identify
some indication for related data. So, the selected technique should generate some kind of
association between fields of the dataset and provide measures that will declare how strong
the connection is. In this survey we preferred to use decision trees and more specifically a tool
(Saha) that is available in the web. This tool uses the C4.5 algorithm (Quinlan, J.R., 1993) for
building a decision tree.

Building a decision tree requires an input data set, known as training data that can be
composed of either continuous/discrete (numeric) or categorical (concrete states) fields. The
output attribute (class) must obligatory be of categorical value. Consequently, if somebody
wants to predict a numeric field he must transform his data in order to convert continuous
fields to categorical. C4.5 is initialized by selecting a subset (T1) of instances from a training
set. This subset used by the algorithm to build a decision tree. The remaining instances (T2)
test the validation of the built decision tree. At every iteration, C4.5 selects the attribute best
able to represent the largest amount of gain in information. The used tool (Saha) after the
completion of growing the tree generates a set of production rules. Production rules are stated
as “IF <CONDITION(S)> THEN <RESULTS>”, where <CONDITION(S)> stands for one or
more input attributes and <RESULTS> stands for the value of the output attribute (class).

In order to validate the extracted rules the tool calculates support, confidence and
capture for every rule that it generates. The support value declares how widely applicable the
rule is. The confidence value measures the accuracy of the rule. Capture declares the
percentage of <RESULTS> that the rule classified correctly. In order to provide a
measurement that generally describes the strength of the rule by taking into account both
support and confidence, we calculate the lift measurement.

#of records containing (Cond, Res)(Re)

of records
Support Conditions sults

total
⇒ = (1)

 #of records containing (Cond, Res)(Re)
of records containing (Cond)

Confidence Conditions sults⇒ = (2)

Confidence (Cond Res)(Re)

Support(Res)
Lift Conditions sults ⇒

⇒ = (3)

2.2 STATISTICAL ANALYSIS

The statistical analysis of the dataset derived from questionnaire results can be divided
into two subcategories, descriptive statistics to summarize the dataset under study and
regression analysis to determine the magnitude of the relationships between the examined
variables.

The first part is quite common and it is not necessary to describe the statistical
measures used, so they are just referenced by name. The analysis has been conducted using
frequency, average value, standard deviation, variance and graphs (M. Norusis, 2005). The
target attributes of the analysis will be object-oriented experience, familiarity with patterns
and application of patterns in games.

The second part is the regression analysis that aims in identifying correlated attributes
and provide an estimate of the magnitude of the relationship between them (M. Norusis,
2005). The regression analysis methods that have been used in the survey are two: logistic
regression and multinomial logistic regression. The most famous regression type is the linear
regression that estimates the coefficients of the linear equation, involving one or more

independent variables that best predict the value of the dependent variable. Logistic
regression is similar to a linear regression model but is suited to models where the dependent
variable is dichotomous. Finally, multinomial logistic regression is useful for classifying
subjects based on values of a set of predictor variables. This type of regression is similar to
logistic regression, but it is more general because the dependent variable is not restricted to
two categories (M. Norusis, 2005). The target fields for this analysis type will be mentioned
by the end of section 3.2.2 where the results of classification will be presented.

3. RESULTS

As mentioned above (section 2) we conducted a two-step analysis. The investigation
aimed at exploring the connection of understanding design patterns within the same family,
the difficulty of understanding each pattern and the possible connection between applying
patterns in games, performing design activities, using game engines and object-oriented
programming experience.

3.1 DESCRIPTIVE STATISTICS RESULTS

The results of the descriptive statistical analysis will be presented through graphs and
tables. The object-oriented experience is described in the dataset by two attributes, one
categorical (HIGH-EXPERIENCE, MEDIUM-EXPERIENCE and LOW-EXPERIENCE) and
one numerical (reflects the exact years of object-oriented programming experience). In the
same way the experience of developers with patterns and the actual pattern application in a
specific game are reflected in other four attributes of the dataset.

The descriptive statistics extracted from processing the numeric attributes of the
aforementioned characteristics are shown in Table 1, while Table 2 summarizes frequency
statistics on the corresponding categorical variables.

TABLE 1. DESCRIPTIVE STATISTICS

Mean Statistic Std. Error
Std.

Deviation Variance

Experience in OO programming 6.46 0.70 3.726 13.888
Number of design patterns familiar with 5.24 0.91 4.918 24.190

Number of design patterns applied 2.96 0.64 3.479 12.106

TABLE 2. FREQUENCY STATISTICS
Topic Category Frequency Percentage
OO Experience HIGH 8 27.6%
 MEDIUM 12 41.4%
 LOW 8 27.6%
Pattern Familiarity EXPERT 9 31.9%
 QUITE-SKILLED 13 44.8%
 NOT-FAMILIAR 7 24.1%
Pattern Application MANY-PATTERNS 5 17.2%
 SOME-PATTERNS 13 44.8%
 NONE-PATTERNS 11 37.9%

Taking into account the data from Tables 1 and 2, we can understand that the sample

of programmers is well balanced with respect to object-oriented experience and the results
about the percentage of developers being familiar to patterns and consequently the actual
application of them are as close to reality as possible, as well as the associations that might be
extracted. The results on pattern familiarity and actual pattern application show that even
though a quite high percentage is considered PATTERN-EXPERTS (31.9%), the percentage of
MANY-PATTERNS games stands for only the 17.2% of the whole dataset.

Another interesting statistic is the frequency of individual pattern knowledge and the
frequency of their application. This measurement is presented as the percentage of the
developers that know each pattern and used it. Additionally quite useful, in order to estimate
the usefulness of each pattern, is to calculate the percentage of developers that used a pattern
among the developers that were familiar with it. The results are presented in Figure 1 and
Table 3.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

Ada
pte

r

Com
po

sit
e

Dec
ora

tor

Fa
cto

ry

Obs
erv

er

Prot
oty

pe

Sing
let

on
Stat

e

Stra
teg

y

Te
mpla

te
Visit

or

Brid
ge

Pe
rc

en
ta

ge

Familiar To

Used

FIGURE 1. PATTERN KNOWLEDGE AND APPLICATIONS

The above diagram shows that the actual ranking of patterns with respect to familiarity

and application frequency is almost identical. The only pattern that is obviously ranked in a
lower position concerning application frequency rather than familiarity is the Prototype
(ranked as 5th in familiarity and 12th in application frequency). This fact might imply that
Prototype is not a very applicable pattern for games since only the 18.1% of those who knew
it, used it.

TABLE 3. PERCENTAGE OF APPLICABILITY OF PATTERNS

Design Pattern Frequency of
Application Design Pattern Frequency of

Application
Adapter 57.1 % Prototype 18.1 %

Composite 75.0 % Singleton 71.4 %
Decorator 57.1 % State 63.6 %
Factory 68.4 % Strategy 55.5 %

Observer 53.8 % Template Method 85.7 %
Bridge 44.4 % Visitor 40.0 %

Table 3 suggests that some patterns might be extremely useful in game development

since they are actually used by a high percentage of developers that know them. An example
of such a pattern is the Template Method that even though it is the 3rd most known pattern is
the most applicable one, in the sense that 85.7% of developers that knew it, considered
beneficial to implement at least an instance of it in a game. Similar levels of applicability are
observed in Singleton and Composite. More specifically, the Singleton pattern appears to be
suitable for game development as it is rated 1st in the actual applications (Figure 1) and 3rd in
the percentage of application among the developers familiar to it (Table 3).

Moreover, at this point it is interesting to compare the results of the survey mentioned
in the introduction (L. Prechelt, 1997), with those extracted for game programmers. For the
six common design patterns in the two surveys the results are shown in Figure 2.

0,00% 10,00
%

20,00
%

30,00
%

40,00
%

50,00
%

60,00
%

70,00
%

80,00
%

Familiar w ith Composite

Familiar w ith Observer

Familiar w ith Visitor

Classic Programmers Game Programmers

FIGURE 2. COMPARISON ON PATTERN KNOWLEDGE

Figure 2, clearly implies that game developers even if they are extremely skilled
programmers, they are not as familiar as expected with design patterns. This is suggested
because in 5 out of 6 (83.3 %) patterns under study their knowledge percentage is below the
corresponding percentage for classical programmers.

3.2 RESULTS ON DESIGN PATTERN UNDERSTANDING

In order to investigate the connection of understanding design patterns within the same
family and the difficulty of understanding patterns we employed both data mining and
statistical analysis as presented in sections 3.2.1 and 3.2.2 respectively.

3.2.1 PATTERN KNOWLEDGE DEPENDENCY GRAPH

The aim of creating the pattern knowledge dependencies graph is to identify whether
game developers are familiar with patterns in accordance to their categories described in
(E.Gamma, 1995) and whether the knowledge of a specific pattern implies familiarity with
other patterns as well. In that sense the graph will answer to questions like: “if someone is/is
not familiar with Factory (a creational pattern) is he more likely to be/not to be familiar with
Singleton and Prototype (other creational patterns) than with any other pattern?”

The relations are depicted in the graph as edges that begin from the CONDITION and
end in the RESULT of the rule. The rules were firstly filtered by support, and only rules with
support>=40% were selected. Afterwards, the remaining rules were sorted by lift (Rules with
lift <=1 are not included in the graph)∗. Patterns are represented as nodes in the graph (Figure
3).

FIGURE 3. PATTERN KNOWLEDGE DEPENDENCY GRAPH

∗ The complete list of the rules generated can be found at http://java.uom.gr/~apamp/publications.html

From the graph in Figure 3 it is obvious that pattern knowledge is related to the

families described in (E. Gamma, 1995). In order to quantify the dependencies between
patterns of the same family we calculated the percent of edges within the same family in
respect to the total number of edges. The edges that leave from nodes of a certain family and
end to another node of the same family are referenced as intra-leaving edges (Intra l.e.). The
edges that leave from nodes of a certain family and end in a node of a different family are
referenced as inter-leaving edges (Inter l.e.). The percentage of overall intra-leaving edges in
the graph is 83,3 %. In the table below (Table 5) the intra-leaving edge percentage for every
pattern family is presented.

TABLE 5. INTER AND INTRA LEAVING EDGES OF PATTERNS

 Pattern Intra l.e. Inter l.e. Percent
Creational 2 1 66.6 %
Structural 5 0 100.0 %

Behavioural 6 2 75.0 %
Total 15 3 83.3 %

3.2.2 PATTERN UNDERSTANDING DIFFICULTY

In order to estimate the difficulty of understanding each pattern we used the results of
two multiple multinomial regressions. The factors that might imply the difficulty of
understanding a pattern are object-oriented experience and pattern knowledge, in the sense
that someone extremely immature with the idea of patterns will also be familiar with the most
understandable ones, similarly to someone with low experience in programming. In contrast
to that, a PATTERN-EXPERT will be familiar with more complicated structures, similarly to a
HIGH-EXPERIENCE programmer. In the first regression (R1), we chose Object-Oriented
Experience (categorical) as dependent variable and if someone is familiar with each (totally
12) pattern (1=familiar, 0=not familiar) as independent variables. The second regression (R2)
included the pattern experience (categorical) as the dependent variable, and if someone is
familiar with each pattern (1=familiar, 0=not familiar) as independent variables. The results
are presented below in Table 6. The average R2 value is 0.938 that is extremely satisfying.
The significance (Sig.) values for the two regressions are 0.01 and 0.00 that are statistically
accepted (Sig<0.05).

Since the two regressions shared the same set of dependent variables there was no
need for standardizing the coefficients. In Table 6 the Beta column represents the coefficient
with which the attribute contributes to the prediction of the dependent variable and the
normalized beta (n_beta) is the same value scaled in order to represent the estimated difficulty
in a 0-1 scale (1=the easiest, 0=the hardest). The overall difficulty level (dl) is calculated as
shown below (as an average):

2
)2(_)1(_1 RbetanRbetandl +

−= (4)

The physical explanation of the coefficient values is that as higher the coefficient for

each variable is, it is more possible for a developer that is not familiar with the pattern to be a
HIGH-EXPERIENCE programmer or a PATTERN-EXPERT, respectively. The negative
values suggest that if someone is not familiar with a certain pattern he is not likely to be a
HIGH-EXPERIENCE programmer or a PATTERN-EXPERT. For example, if the coefficient
of a pattern in the prediction of object-oriented experience is less than another, then the first
pattern is more probably known by more experienced programmers.

TABLE 6. PATTERN UNDERSTANDING DIFFICULTY

The results on Table 6 indicate that some patterns, like Template Method, Bridge and

Factory are widely known among developers with low object-oriented experience or patterns
familiarity. This fact clearly implies that these patterns are more easily understood than
others. On the other hand, Singleton, Composite, Visitor, Decorator and Observer can be
considered more complex since developers that are familiar to them are either extremely
experienced in object-oriented programming or in design patterns. The results of the table
above and the composition of the pattern knowledge graph in section 3.2.1 might prove
interesting in the way that patterns should be referenced in a corresponding course.

3.3 FACTORS INFLUENCE DESIGN PATTERN APPLICATION

In this section it is attempted to identify which attribute is more closely related to
pattern application in open-source games. The candidates examined are game engines use,
object-oriented experience and design activities. The method used is backward stepwise LR
binary regression. In order to perform binary regression the pattern application has to be
represented by a dichotomous attribute. In order to achieve this expectation we have created
two new variables for every developer’s game, HIGH-PATTERN games (patterns_applied >
7.5) and LOW-PATTERN games (patterns_applied < 7.5).

The correct classification for the model is 92.3%. The results are presented in the table
below (Table 7). More specifically it is implied that the most significant factor for pattern
application is design activities, followed by object-oriented experience.

TABLE 7. BACKWARD LR LOGISTIC REGRESSION FOR PATTERN APPLICATION

 Beta Std.Err. Sig.
Step 1(a) Design Activities 3.134 1.969 0.111
 Game Engines -0.839 1.449 0.563
 OO Experience 0.585 0.303 0.053
 Constant -7.153 3.360 0.033
Step 2(a) Design Activities 3.127 1.950 0.109
 OO Experience 0.551 0.286 0.054
 Constant -7.103 3.296 0.031

In order to strengthen the above statement we will present a boxplot that shows the

relationship between design activities and the numeric attribute that represents the number of
patterns that is applied in each game. The boxplot is presented in Figure 4, below.

 Beta (R1) N_beta (R1) Beta (R2) n_beta (R2) Dl

Strategy 0.643 0.37 2.969 0.57 0.530
Template Method 16.397 0.48 12.213 0.70 0.410
Bridge -18.035 0.24 33.410 1.00 0.380
Factory 92.329 1.00 -2.571 0.50 0.250
Singleton -17.599 0.24 -38.018 0.00 0.880
Visitor -18.175 0.24 -36.716 0.02 0.870
Composite -39.840 0.09 -25.447 0.18 0.865
Decorator -35.626 0.12 -21.700 0.23 0.825
Observer -53.074 0.00 -9.892 0.39 0.805
Prototype 19.827 0.50 -23.453 0.20 0.650
State 1.595 0.38 -0.630 0.52 0.550
Adapter 38.717 0.63 -18.178 0.28 0.545

FIGURE 4. BOXPLOT DEPICTING THE RELATIONSHIP BETWEEN DESIGN
ACTIVITIES AND PATTERN APPLICATION

1214N =

Design Activities

truefalse

ap
pl

ie
d

pa
tte

rn
s

12

6

0

From the boxplot it is obvious that developers that execute design activities before

coding are more likely to apply more patterns in the game they create. Although this claim is
quite clear, the difference is not as large as it might be expected. The same methodology has
also been used in investigating the relation between object-oriented experience and pattern
application. The corresponding boxplot is presented in Figure 5.

FIGURE 5. BOXPLOT DEPICTING THE RELATIONSHIP BETWEEN OBJECT-
ORIENTED EXPERIENCE AND PATTERN APPLICATION

9118N =

OO experience

lowmediumhigh

N
um

be
r o

f d
es

ig
n

pa
tte

rn
s

ap
pl

ie
d

18

12

6

0

27

The above figure shows that MANY-PATTERN games are usually developed by

HIGH-EXPERIENCE programmers. But the majority of HIGH-EXPERIENCE programmers
tend to implement SOME-PATTERNS games, similar to the MEDIUM-EXPERIENCE
programmers (bold line of the boxplot in Figure 6). In order to further investigate why HIGH-
EXPERIENCED programmers sometimes create NONE-PATTERNS games we tried to
identify a relation between object-oriented experience and design activities. Performing data
mining analysis, the production rules implied that 75% of HIGH-EXPERIENCE programmers
do not perform design activities before programming the game. This fact itself partly explains
why some HIGH-EXPERIENCE programmers sometimes create NONE-PATTERNS games
according to Table 7.

3.4 DISCUSSION

The survey aimed at investigating some target points concerning game developers and
design patterns. The results of the survey can be divided and presented into two categories:
results on individual patterns and results on possible correlation of object-oriented experience,
design activities, game engines and design patterns. Some of these results comply with
common sense, but others are quite strange and need further investigation.

First of all, game developers appeared to be familiar with design patterns at a lower
degree than classical programmers (Figure 3). More specifically, the only pattern that was
more popular among game developers rather than other programmers proved to be Factory.
Additionally, some patterns which might be more applicable in game development have been
identified (Table 3). Furthermore, pattern knowledge proved to be associated with pattern
families described in (E. Gamma, 1995) as shown in (Figure 4). The connection proved to be
stronger in Structural patterns and less strong in Creational patterns. Moreover, it has been
attempted to calculate the difficulty of understanding a pattern (Table 6). The results
suggested that clearly some patterns are more difficult to understand than others. For
example, the Visitor pattern, which is widely acknowledged as complicated due to the use of
dual dispatch ranks as the second most difficult pattern. The Singleton pattern, although
simple in its static structure, requires detailed knowledge of the corresponding code
implementation (private constructor, static self-reference and static get method), something
which possibly explains the estimated difficulty. On the other hand, the group
State/Strategy/Template Method patterns which essentially focus only on the use of
abstraction are considered quite easy to understand.

Concerning the use of patterns in game development and the factors that could be
connected to it, design activities proved to be the most influential (Table 7, Figure 5).
According to the survey if someone does not perform design activities before programming
he will probably create a game that does not implement any instance of a pattern.
Additionally, object-oriented experience has proven to be a minor factor for applying patterns
to games (Table 7, Figure 6).

The target group of the survey was limited to open-source game programmers, so
there can be no conclusions for industrial game development. Therefore, it is quite risky to
generalize the conclusions extracted.

4. CONCLUSIONS

This paper aimed at investigating the use of object-oriented design patterns in open-
source game development. In order to achieve the survey’s goals we conducted an email-
based survey. The target group of the survey was open-source game developers that have been
asked to fill-in a questionnaire. The dataset extracted from the responds was processed using
data mining and statistical analysis.

The results of the survey implied that game developers are less familiar with design
patterns than other programmers; that some patterns are more appropriate for game
programming and that design activities are the most significant factor for creating pattern-
based games. An unexpected finding was that developers with high degree of experience in
object-oriented programming tend to create games with a limited number of patterns in a
similar rate to the one of low experience programmers. This might occur because high
experience programmers tend not to execute design activities before coding.

In any case, we adopt the unanimous opinion of the pattern experts of our survey, that
the application of design patterns in games certainly improves their extensibility.

REFERENCES
1. C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language – Town, Buildings,

Construction, Oxford University Press, New York, 1977
2. G. Alexe et.al, “A robust meta-classification strategy for cancer diagnosis from gene

expression data”, Procedures of IEEE Computer Systems Conference, 322-325, 2005
3. A. Ampatzoglou, A. Chatzigeorgiou, “Evaluation of object-oriented design patterns in

game development”, Information and Software Technology, Vol. 49, Issue 5, May 2007,
pp 445-454

4. J. Borchers, “Teaching HCI Design Patterns”, Patterns in Practice: A Workshop for UI
Designers” workshop at CHI 2002 International Conference on Human Factors of
Computer Systems, Minneapolis, MI, April 21-25, 2002

5. N.R. Cook, R.Y. Zee, P.M. Ridker, “Tree and spline based association analysis of gene-
gene interaction models for ischemic stroke”, Stat Med, 23. 1439-1453, 2004

6. E. Gamma, R. Helms, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional, Reading, MA, 1995

7. D. J. Hand, “Statistics and Data Mining: Intersecting Disciplines”, ACM SIGKDD, June
1999, volume 1, issue 1, pages 16-19

8. Khoshgoftaar, M.T. and Allen, B.E. (1999). “Modeling software quality with
classification trees”, In Recent Advances in Reliability and Quality Engineering”, Hoang,
P. (Ed.), World Scientific.

9. R.S. Lin, S.Y. Rhee, R.W. Shafer, A.K. Das, “A combined data mining approach for
infrequent events: Analyzing HIV mutation changes based on treatment history”,
Computational Systems Bioinformatics, Stanford, 2006.

10. K.L. Manfreda, V.Vehovar, “Survey Design Features influencing rates in web surveys”,
International Conference on Improving Surveys. Copenhagen, October 2005

 http://www.icis.dk/ICIS_papers/C2_4_3.pdf
11. D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, “UCI Repository of machine learning

databases”, 1998, http://www.ics.uci.edu/~mlearn/MLRepository.html
12. M. Norusis, “SPSS 13.0 Guide to data analysis”, Prentice Hall (Feb 2005)
13. L. Prechelt, B. Unager, D.C. Schmit, “Replication of the first controlled experiment on the

usefulness of design patterns: Detailed description and evaluation”, Technical Report
wucs-97-34, December 1997, http://www.cs.wustl.edu/cs/techreports/1997

14. L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, L. G. Votta, “A controlled experiment in
maintenance comparing design patterns to simpler solutions.”, IEEE Transactions on
Software Engineering 27(12), pages 1134-1144, 2001

15. Quinlan, J.R. (1993). “Programs for machine learning”, San Mateo, CA: Morgan
Kaufmann.

16. T.M. Rhyne, P. Doenges, B. Hibbard, H. Pfister, N. Robins, “The impact of Computer
Games on scientific & information visualization: “if you can’t beat them, join them”
(panel)”, IEEE Visualization, Proceedings of the conference on visualization ’00, Salt
Lake City, Utah, USA, pages 519-521

17. Rollings, D. Morris, “Game Architecture and Design: A New Edition”, New Riders,
Indianapolis, 2003.

18. R. Rucker, “Software engineering and computer games”, Addison Wesley, Essex, United
Kingdom, 2003

19. Saha, “Classification Tree in Excel”, http://www.geocities.com/adotsaha/CTree/CTree.zip
20. Sourceforge.net, open-source community, http://www.sourceforge.net
21. Tian, J. and Palma, J. (1998). “Analyzing and improving reliability: A tree-based

approach”. IEEE Software, 15(2), pp. 97-104.
22. L. Valente, A. Conci, “Guff: A Game Development Tool”, Digital version of the

proceedings of XVIII Brazilian Symposium on Computer Graphics and Image Processing
(SIBGRAPI), Natal, Brazil, 2005

23. M. Vokác, W. Tichy, D.I.K. Sjøberg, E. Arisholm, M. Aldrin, “A Controlled Experiment
Comparing the Maintainability of Programs Designed with and without Design Patterns -
A Replication in a Real Programming Environment”, Empirical Software Engineering,
vol. 9, pages 149-195, 2004

