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Game development is considered to be one of the most profitable fields in the software industry. Since 
game production is a very complicated task to accomplish, software engineering techniques could 
prove useful for providing maintainability and reusability. This paper investigates to what extent open-
source game developers are familiar with design patterns and apply them in order to improve games’ 
structure. Additionally, some generic subjects on design patterns are being examined, such as pattern 
difficulty and relationships between design patterns of the same family.  
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1. INTRODUCTION 

It goes without saying that computer game design is one of the most modern and fast 
growing trends in computer science (T.M. Rhyne, 2000, pp. 519-521). Until the middle of 
90’s, game developers did not aim to produce reusable code since every program has been 
written from scratch in assembly language (Rollings, 2003). Later, reusable coding has 
proven to be one of the most important issues in game development because games became 
far more complex and their production process more time consuming. In order to alleviate this 
problem, frameworks and game engines have been created. A framework is a collection of 
classes that can be widely reused and integrated with other components (R. Rucker, 2003) and 
(L. Valente, 2005). Usually they implement mechanisms that occur in many games, such as 
input handling, file handling (texture, models, audio etc), 3D rendering etc. Game engines are 
programs that provide developers the potential to design game levels, handle player and 
opposition behavior, by using scripting languages and powerful GUIs. As it is easily 
understood, if frameworks and game engines are “well-structured”, they can be maintained 
without extreme effort and be transformed so that they can fit as many game genres as 
possible.  

The application of design patterns in systems (C. Alexander, 1977) is a quite popular 
software engineering technique. Employing patterns in software design and implementation is 
considered to provide code reusability and maintainability (E. Gamma, 1995). The benefits 
and drawbacks of the application of patterns in classical programming (not game related) are 
discussed in a few papers (L. Prechelt, 2001, pp.1134-1144) and (M. Vokác, 2004, pp. 149-
195). The results of applying design patterns in games, concerning complexity, cohesion, 
coupling and size have also been examined (A. Ampatzoglou, 2007, pp 445-454). The results 
of the aforementioned research imply that patterns reduce complexity of games, increase 
cohesion between methods, reduce coupling but increase the size of the examined games.  

This paper aims at investigating whether open-source game developers are familiar 
with patterns and if they actually employ them. Furthermore, it examines whether game 
developers are familiar with patterns of the same family and design pattern comprehension 
difficulty. The results have been obtained through an email survey that was conducted with 



questionnaires sent to open-source game programmers. The feedback from the questionnaires 
was analyzed with statistical and data mining packages 

In the literature there are several efforts concerning statistical analysis on the use of 
patterns in classical programming. More specifically, Prechelt in (L. Prechelt, 1997), asked 
the programmers participating in an experiment to fill in a questionnaire in order to identify 
their background in design patterns. The subjects had an average of 5 years of programming 
experience and 91% of them had written more than 3000 Lines Of Code (LOC) in their life. 
The most known pattern between them proved to be Iterator and the least known, the Proxy. 
Similarly to investigating design patterns for game development, in (J. Borchers, 2002) the 
author examined the usefulness of Human-Computer Interaction (HCI) patterns. In his survey 
the author asked students to fill in questionnaires, on the completion of a course. The results 
suggested that each student remembered an average of 1.73 patterns, rated the usefulness for 
learning 1.96 (out of 5), the usefulness for current project 2.23 (out of 5) and the usefulness 
for reuse in future projects 1.94 (out of 5). 

 
2. ANALYSIS DESCRIPTION 

In order to investigate the target points of our survey, we contacted open-source game 
developers by e-mail and asked them to fill in a questionnaire∗. Their addresses were most 
commonly found from a wide open-source community (Sourceforge) and from universities 
that offer undergraduate or postgraduate courses in game programming. In total, 245 e-mails 
have been sent and 29 questionnaires have been received (response rate=11.8%, failure 
rate=2.1% (K.L. Manfreda, 2005).  The methodology of the survey was based on (K.L. 
Manfreda, 2005) that suggested to provide individual invitations to any possible target and to 
avoid open-ended questions.  

The questionnaire has been divided into two subsections. The first includes 
information about the programmer such as experience (in years) in the most common 
programming languages and whether he is familiar with some design patterns.  The second 
section included information about a certain game indicated by the developer. More 
specifically, we retrieved information about the dimensionality of the game, the packages 
used for 3D graphics, the appearance of design patterns in it and additional information about 
the overall belief in the usefulness of patterns. The complete questionnaire led to the 
construction of the database. The questionnaire consists of 10 questions from which we 
extracted 94 variables. Most of the extracted attributes were either binary or numeric. Some of 
those variables are coded into a three category scale. 

The attributes extracted from the questionnaires have been analyzed using two 
intersecting scientific approaches, statistics and data mining. This kind of analysis is quite 
popular in scientific research as shown in (G. Alexe, 2005, pp.322-325), (R.S. Lin, 2006) and 
(D.J. Newman, 1998). Both techniques can be combined as follows; statistical tests can be 
applied to help analyze the results of a data mining session. Statistical analysis is clearer in its 
goal, so it is not easy to face an unexpected result, and the processing includes a beginning 
and an ending. On the other hand the purpose of a data mining session is to identify hidden 
and potentially useful knowledge from a data set. The knowledge gained is given as a 
conceptual generalization of the data set. Hidden knowledge can be mined using supervised 
learning and/or unsupervised clustering. Decision or classification trees are one of the most 
popular tools for constructing classification models in the software engineering field 
(Khoshgoftaar, M.T., 1999) and (Tian, J., 1998, pp. 97-104). Decision trees are induction 
techniques used to discover the interactions among predictors that do not exhibit strong 
marginal effects (N.R. Cook, 2004, pp.1439-1453). Roughly speaking, this can be achieved 
by subdividing the information contained in the data set.       
                                                 
∗ The questionnaire can be found at http://java.uom.gr/~apamp/publications.html  



 
2.1 DATA MINING  

As mentioned above data mining techniques are used in this survey in order to identify 
some indication for related data. So, the selected technique should generate some kind of 
association between fields of the dataset and provide measures that will declare how strong 
the connection is. In this survey we preferred to use decision trees and more specifically a tool 
(Saha) that is available in the web. This tool uses the C4.5 algorithm (Quinlan, J.R., 1993) for 
building a decision tree. 

Building a decision tree requires an input data set, known as training data that can be 
composed of either continuous/discrete (numeric) or categorical (concrete states) fields. The 
output attribute (class) must obligatory be of categorical value. Consequently, if somebody 
wants to predict a numeric field he must transform his data in order to convert continuous 
fields to categorical. C4.5 is initialized by selecting a subset (T1) of instances from a training 
set. This subset used by the algorithm to build a decision tree. The remaining instances (T2) 
test the validation of the built decision tree. At every iteration, C4.5 selects the attribute best 
able to represent the largest amount of gain in information. The used tool (Saha) after the 
completion of growing the tree generates a set of production rules. Production rules are stated 
as “IF <CONDITION(S)> THEN <RESULTS>”, where <CONDITION(S)> stands for one or 
more input attributes and <RESULTS> stands for the value of the output attribute (class). 

In order to validate the extracted rules the tool calculates support, confidence and 
capture for every rule that it generates. The support value declares how widely applicable the 
rule is. The confidence value measures the accuracy of the rule. Capture declares the 
percentage of <RESULTS> that the rule classified correctly. In order to provide a 
measurement that generally describes the strength of the rule by taking into account both 
support and confidence, we calculate the lift measurement.  
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2.2 STATISTICAL ANALYSIS 

The statistical analysis of the dataset derived from questionnaire results can be divided 
into two subcategories, descriptive statistics to summarize the dataset under study and 
regression analysis to determine the magnitude of the relationships between the examined 
variables. 

The first part is quite common and it is not necessary to describe the statistical 
measures used, so they are just referenced by name. The analysis has been conducted using 
frequency, average value, standard deviation, variance and graphs (M. Norusis, 2005). The 
target attributes of the analysis will be object-oriented experience, familiarity with patterns 
and application of patterns in games.  

The second part is the regression analysis that aims in identifying correlated attributes 
and provide an estimate of the magnitude of the relationship between them (M. Norusis, 
2005). The regression analysis methods that have been used in the survey are two: logistic 
regression and multinomial logistic regression. The most famous regression type is the linear 
regression that estimates the coefficients of the linear equation, involving one or more 



independent variables that best predict the value of the dependent variable. Logistic 
regression is similar to a linear regression model but is suited to models where the dependent 
variable is dichotomous. Finally, multinomial logistic regression is useful for classifying 
subjects based on values of a set of predictor variables. This type of regression is similar to 
logistic regression, but it is more general because the dependent variable is not restricted to 
two categories (M. Norusis, 2005). The target fields for this analysis type will be mentioned 
by the end of section 3.2.2 where the results of classification will be presented. 
 
3. RESULTS 

As mentioned above (section 2) we conducted a two-step analysis. The investigation 
aimed at exploring the connection of understanding design patterns within the same family, 
the difficulty of understanding each pattern and the possible connection between applying 
patterns in games, performing design activities, using game engines and object-oriented 
programming experience. 

 
3.1 DESCRIPTIVE STATISTICS RESULTS 

The results of the descriptive statistical analysis will be presented through graphs and 
tables. The object-oriented experience is described in the dataset by two attributes, one 
categorical (HIGH-EXPERIENCE, MEDIUM-EXPERIENCE and LOW-EXPERIENCE) and 
one numerical (reflects the exact years of object-oriented programming experience). In the 
same way the experience of developers with patterns and the actual pattern application in a 
specific game are reflected in other four attributes of the dataset.  

The descriptive statistics extracted from processing the numeric attributes of the 
aforementioned characteristics are shown in Table 1, while Table 2 summarizes frequency 
statistics on the corresponding categorical variables. 

 
TABLE 1.  DESCRIPTIVE STATISTICS 

Mean  Statistic Std. Error 
Std. 

Deviation Variance 

Experience in OO programming 6.46 0.70 3.726 13.888 
Number of design patterns familiar with 5.24 0.91 4.918 24.190 

Number of design patterns applied 2.96 0.64 3.479 12.106 
 

TABLE 2.  FREQUENCY STATISTICS 
Topic Category Frequency Percentage 
OO Experience HIGH 8 27.6% 
 MEDIUM 12 41.4% 
 LOW 8 27.6% 
Pattern Familiarity EXPERT 9 31.9% 
 QUITE-SKILLED 13 44.8% 
 NOT-FAMILIAR 7 24.1% 
Pattern  Application MANY-PATTERNS 5 17.2% 
 SOME-PATTERNS 13 44.8% 
 NONE-PATTERNS 11 37.9% 

 
Taking into account the data from Tables 1 and 2, we can understand that the sample 

of programmers is well balanced with respect to object-oriented experience and the results 
about the percentage of developers being familiar to patterns and consequently the actual 
application of them are as close to reality as possible, as well as the associations that might be 
extracted. The results on pattern familiarity and actual pattern application show that even 
though a quite high percentage is considered PATTERN-EXPERTS (31.9%), the percentage of 
MANY-PATTERNS games stands for only the 17.2% of the whole dataset. 



Another interesting statistic is the frequency of individual pattern knowledge and the 
frequency of their application. This measurement is presented as the percentage of the 
developers that know each pattern and used it. Additionally quite useful, in order to estimate 
the usefulness of each pattern, is to calculate the percentage of developers that used a pattern 
among the developers that were familiar with it. The results are presented in Figure 1 and 
Table 3. 
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FIGURE 1.  PATTERN KNOWLEDGE AND APPLICATIONS 

 
The above diagram shows that the actual ranking of patterns with respect to familiarity 

and application frequency is almost identical. The only pattern that is obviously ranked in a 
lower position concerning application frequency rather than familiarity is the Prototype 
(ranked as 5th in familiarity and 12th in application frequency). This fact might imply that 
Prototype is not a very applicable pattern for games since only the 18.1% of those who knew 
it, used it.  

 
TABLE 3.  PERCENTAGE OF APPLICABILITY OF PATTERNS 

Design Pattern Frequency of 
Application Design Pattern Frequency of 

Application 
Adapter 57.1 % Prototype 18.1 % 

Composite 75.0 % Singleton 71.4 % 
Decorator 57.1 % State 63.6 % 
Factory 68.4 % Strategy 55.5 % 

Observer 53.8 % Template Method 85.7 % 
Bridge 44.4 % Visitor 40.0 % 

 
Table 3 suggests that some patterns might be extremely useful in game development 

since they are actually used by a high percentage of developers that know them. An example 
of such a pattern is the Template Method that even though it is the 3rd most known pattern is 
the most applicable one, in the sense that 85.7% of developers that knew it, considered 
beneficial to implement at least an instance of it in a game. Similar levels of applicability are 
observed in Singleton and Composite. More specifically, the Singleton pattern appears to be 
suitable for game development as it is rated 1st in the actual applications (Figure 1) and 3rd in 
the percentage of application among the developers familiar to it (Table 3). 

Moreover, at this point it is interesting to compare the results of the survey mentioned 
in the introduction (L. Prechelt, 1997), with those extracted for game programmers. For the 
six common design patterns in the two surveys the results are shown in Figure 2.  

 



0,00% 10,00
%

20,00
%

30,00
%

40,00
%

50,00
%

60,00
%

70,00
%

80,00
%

Familiar w ith Composite

Familiar w ith Observer

Familiar w ith Visitor

Classic Programmers Game Programmers
 

FIGURE 2.  COMPARISON ON PATTERN KNOWLEDGE 
 

Figure 2, clearly implies that game developers even if they are extremely skilled 
programmers, they are not as familiar as expected with design patterns. This is suggested 
because in 5 out of 6 (83.3 %) patterns under study their knowledge percentage is below the 
corresponding percentage for classical programmers. 
 
3.2 RESULTS ON DESIGN PATTERN UNDERSTANDING 

In order to investigate the connection of understanding design patterns within the same 
family and the difficulty of understanding patterns we employed both data mining and 
statistical analysis as presented in sections 3.2.1 and 3.2.2 respectively.  

 
3.2.1 PATTERN KNOWLEDGE DEPENDENCY GRAPH 

The aim of creating the pattern knowledge dependencies graph is to identify whether 
game developers are familiar with patterns in accordance to their categories described in 
(E.Gamma, 1995) and whether the knowledge of a specific pattern implies familiarity with 
other patterns as well. In that sense the graph will answer to questions like: “if someone is/is 
not familiar with Factory (a creational pattern) is he more likely to be/not to be familiar with 
Singleton and Prototype (other creational patterns) than with any other pattern?” 

The relations are depicted in the graph as edges that begin from the CONDITION and 
end in the RESULT of the rule. The rules were firstly filtered by support, and only rules with 
support>=40% were selected. Afterwards, the remaining rules were sorted by lift (Rules with 
lift <=1 are not included in the graph)∗. Patterns are represented as nodes in the graph (Figure 
3). 

 
 
FIGURE 3.  PATTERN KNOWLEDGE DEPENDENCY GRAPH 

                                                 
∗ The complete list of the rules generated can be found at http://java.uom.gr/~apamp/publications.html  



 
From the graph in Figure 3 it is obvious that pattern knowledge is related to the 

families described in (E. Gamma, 1995). In order to quantify the dependencies between 
patterns of the same family we calculated the percent of edges within the same family in 
respect to the total number of edges. The edges that leave from nodes of a certain family and 
end to another node of the same family are referenced as intra-leaving edges (Intra l.e.). The 
edges that leave from nodes of a certain family and end in a node of a different family are 
referenced as inter-leaving edges (Inter l.e.).  The percentage of overall intra-leaving edges in 
the graph is 83,3 %. In the table below (Table 5) the intra-leaving edge percentage for every 
pattern family is presented. 

 
TABLE 5.  INTER AND INTRA LEAVING EDGES OF PATTERNS 

  Pattern Intra l.e. Inter l.e. Percent 
Creational 2 1 66.6 % 
Structural 5 0 100.0 % 

Behavioural 6 2 75.0 % 
Total 15 3 83.3 % 

 
3.2.2 PATTERN UNDERSTANDING DIFFICULTY 

In order to estimate the difficulty of understanding each pattern we used the results of 
two multiple multinomial regressions. The factors that might imply the difficulty of 
understanding a pattern are object-oriented experience and pattern knowledge, in the sense 
that someone extremely immature with the idea of patterns will also be familiar with the most 
understandable ones, similarly to someone with low experience in programming. In contrast 
to that, a PATTERN-EXPERT will be familiar with more complicated structures, similarly to a 
HIGH-EXPERIENCE programmer. In the first regression (R1), we chose Object-Oriented 
Experience (categorical) as dependent variable and if someone is familiar with each (totally 
12) pattern (1=familiar, 0=not familiar) as independent variables. The second regression (R2) 
included the pattern experience (categorical) as the dependent variable, and if someone is 
familiar with each pattern (1=familiar, 0=not familiar) as independent variables. The results 
are presented below in Table 6. The average R2 value is 0.938 that is extremely satisfying. 
The significance (Sig.) values for the two regressions are 0.01 and 0.00 that are statistically 
accepted (Sig<0.05).  

Since the two regressions shared the same set of dependent variables there was no 
need for standardizing the coefficients. In Table 6 the Beta column represents the coefficient 
with which the attribute contributes to the prediction of the dependent variable and the 
normalized beta (n_beta) is the same value scaled in order to represent the estimated difficulty 
in a 0-1 scale (1=the easiest, 0=the hardest). The overall difficulty level (dl) is calculated as 
shown below (as an average): 

 

2
)2(_)1(_1 RbetanRbetandl +

−=         (4) 

  
The physical explanation of the coefficient values is that as higher the coefficient for 

each variable is, it is more possible for a developer that is not familiar with the pattern to be a 
HIGH-EXPERIENCE programmer or a PATTERN-EXPERT, respectively. The negative 
values suggest that if someone is not familiar with a certain pattern he is not likely to be a 
HIGH-EXPERIENCE programmer or a PATTERN-EXPERT. For example, if the coefficient 
of a pattern in the prediction of object-oriented experience is less than another, then the first 
pattern is more probably known by more experienced programmers.  

 



TABLE 6.  PATTERN UNDERSTANDING DIFFICULTY 

 
The results on Table 6 indicate that some patterns, like Template Method, Bridge and 

Factory are widely known among developers with low object-oriented experience or patterns 
familiarity. This fact clearly implies that these patterns are more easily understood than 
others.  On the other hand, Singleton, Composite, Visitor, Decorator and Observer can be 
considered more complex since developers that are familiar to them are either extremely 
experienced in object-oriented programming or in design patterns. The results of the table 
above and the composition of the pattern knowledge graph in section 3.2.1 might prove 
interesting in the way that patterns should be referenced in a corresponding course.  

 
3.3 FACTORS INFLUENCE DESIGN PATTERN APPLICATION  

In this section it is attempted to identify which attribute is more closely related to 
pattern application in open-source games. The candidates examined are game engines use, 
object-oriented experience and design activities. The method used is backward stepwise LR 
binary regression. In order to perform binary regression the pattern application has to be 
represented by a dichotomous attribute. In order to achieve this expectation we have created 
two new variables for every developer’s game, HIGH-PATTERN games (patterns_applied > 
7.5) and LOW-PATTERN games (patterns_applied < 7.5).  

The correct classification for the model is 92.3%. The results are presented in the table 
below (Table 7). More specifically it is implied that the most significant factor for pattern 
application is design activities, followed by object-oriented experience. 

 
TABLE 7.  BACKWARD LR LOGISTIC REGRESSION FOR PATTERN APPLICATION 

  Beta Std.Err. Sig. 
Step 1(a) Design Activities 3.134 1.969 0.111 
  Game Engines -0.839 1.449 0.563 
  OO Experience 0.585 0.303 0.053 
  Constant -7.153 3.360 0.033 
Step 2(a) Design Activities 3.127 1.950 0.109 
  OO Experience 0.551 0.286 0.054 
  Constant -7.103 3.296 0.031 

 
In order to strengthen the above statement we will present a boxplot that shows the 

relationship between design activities and the numeric attribute that represents the number of 
patterns that is applied in each game. The boxplot is presented in Figure 4, below. 

 

 Beta (R1) N_beta (R1) Beta (R2)  n_beta (R2) Dl 

Strategy 0.643 0.37 2.969 0.57 0.530 
Template Method 16.397 0.48 12.213 0.70 0.410 
Bridge -18.035 0.24 33.410 1.00 0.380 
Factory 92.329 1.00 -2.571 0.50 0.250 
Singleton -17.599 0.24 -38.018 0.00 0.880 
Visitor -18.175 0.24 -36.716 0.02 0.870 
Composite -39.840 0.09 -25.447 0.18 0.865 
Decorator -35.626 0.12 -21.700 0.23 0.825 
Observer -53.074 0.00 -9.892 0.39 0.805 
Prototype 19.827 0.50 -23.453 0.20 0.650 
State 1.595 0.38 -0.630 0.52 0.550 
Adapter 38.717 0.63 -18.178 0.28 0.545 



FIGURE 4.  BOXPLOT DEPICTING THE RELATIONSHIP BETWEEN DESIGN 
ACTIVITIES AND PATTERN APPLICATION 
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From the boxplot it is obvious that developers that execute design activities before 

coding are more likely to apply more patterns in the game they create. Although this claim is 
quite clear, the difference is not as large as it might be expected.  The same methodology has 
also been used in investigating the relation between object-oriented experience and pattern 
application. The corresponding boxplot is presented in Figure 5. 

 
FIGURE 5.  BOXPLOT DEPICTING THE RELATIONSHIP BETWEEN OBJECT-
ORIENTED EXPERIENCE AND PATTERN APPLICATION 
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The above figure shows that MANY-PATTERN games are usually developed by 

HIGH-EXPERIENCE programmers. But the majority of HIGH-EXPERIENCE programmers 
tend to implement SOME-PATTERNS games, similar to the MEDIUM-EXPERIENCE 
programmers (bold line of the boxplot in Figure 6). In order to further investigate why HIGH-
EXPERIENCED programmers sometimes create NONE-PATTERNS games we tried to 
identify a relation between object-oriented experience and design activities. Performing data 
mining analysis, the production rules implied that 75% of HIGH-EXPERIENCE programmers 
do not perform design activities before programming the game. This fact itself partly explains 
why some HIGH-EXPERIENCE programmers sometimes create NONE-PATTERNS games 
according to Table 7. 

 
3.4 DISCUSSION 

The survey aimed at investigating some target points concerning game developers and 
design patterns. The results of the survey can be divided and presented into two categories: 
results on individual patterns and results on possible correlation of object-oriented experience, 
design activities, game engines and design patterns. Some of these results comply with 
common sense, but others are quite strange and need further investigation. 



First of all, game developers appeared to be familiar with design patterns at a lower 
degree than classical programmers (Figure 3). More specifically, the only pattern that was 
more popular among game developers rather than other programmers proved to be Factory. 
Additionally, some patterns which might be more applicable in game development have been 
identified (Table 3). Furthermore, pattern knowledge proved to be associated with pattern 
families described in (E. Gamma, 1995) as shown in (Figure 4). The connection proved to be 
stronger in Structural patterns and less strong in Creational patterns. Moreover, it has been 
attempted to calculate the difficulty of understanding a pattern (Table 6). The results 
suggested that clearly some patterns are more difficult to understand than others. For 
example, the Visitor pattern, which is widely acknowledged as complicated due to the use of 
dual dispatch ranks as the second most difficult pattern. The Singleton pattern, although 
simple in its static structure, requires detailed knowledge of the corresponding code 
implementation (private constructor, static self-reference and static get method), something 
which possibly explains the estimated difficulty. On the other hand, the group 
State/Strategy/Template Method patterns which essentially focus only on the use of 
abstraction are considered quite easy to understand.  

Concerning the use of patterns in game development and the factors that could be 
connected to it, design activities proved to be the most influential (Table 7, Figure 5). 
According to the survey if someone does not perform design activities before programming 
he will probably create a game that does not implement any instance of a pattern. 
Additionally, object-oriented experience has proven to be a minor factor for applying patterns 
to games (Table 7, Figure 6).  

The target group of the survey was limited to open-source game programmers, so 
there can be no conclusions for industrial game development. Therefore, it is quite risky to 
generalize the conclusions extracted.  
 
4. CONCLUSIONS  

This paper aimed at investigating the use of object-oriented design patterns in open-
source game development. In order to achieve the survey’s goals we conducted an email-
based survey. The target group of the survey was open-source game developers that have been 
asked to fill-in a questionnaire. The dataset extracted from the responds was processed using 
data mining and statistical analysis. 

The results of the survey implied that game developers are less familiar with design 
patterns than other programmers; that some patterns are more appropriate for game 
programming and that design activities are the most significant factor for creating pattern-
based games. An unexpected finding was that developers with high degree of experience in 
object-oriented programming tend to create games with a limited number of patterns in a 
similar rate to the one of low experience programmers. This might occur because high 
experience programmers tend not to execute design activities before coding.  

In any case, we adopt the unanimous opinion of the pattern experts of our survey, that 
the application of design patterns in games certainly improves their extensibility. 
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